
CREATIVE COMPUTER
[bookmark: bookmark0]MONITOR HANDLING
MANUAL
First Edition
August, 1960
 (
NOTE:
)
SORD COMPUTER CORPORATION
(1) This document may not be reproduced in any form, in whole or in part, without the express written permission of SORD COMPUTER CORPORATION.
(2) The contents of this manual may be changed without prior notice.
(3) This manual has been carefully prepared and reviewed for completeness and accuracy. However, contact us concerning any errors which you may notice or on any points on which you are in doubt.
(4) SORD COMPUTER CORPORATION, assumes no responsibility for any consequences which may arise from the use of this manual or for any errors which it may contain.
TABLE OF CONTENTS
Chapter 1	Basic concept of M5 Monitor System	 1
Chapter 2	Display handler	 2
Chapter 3	Keyboard handling	 3
Chapter 4	Sprite handler	 4
Chapter 5	Event handler	 5
Chapter 6 Saving to and loading from cassette
storage	 6
Chapter 7	Sound generator handler	 7
Chapter 8	Printer handler	 8
Chapter 9	Other System Information	 9
Chapter 10	Appendices	 10

[bookmark: bookmark1]Chapter 1 Basic Concept of M5 Monitor System
The M5 computer belongs to the inexpensive class of personal computer. Most personal computers of this class have been hobbyist or introductory machines, probably because of the makers' cost factor. Many of these machines use a tiny BASIC in ROM. At first glance, this seems reasonable but this arrangement restricts the flexibility of machines.
This system monitor does not provide any of the so-called OS features. Contents of the monitor ROM (8KB) are all drivers routines and are written as subroutines. Users can freely access software in the ROM and can utilize monitor subroutines in their own application programs. About 200 monitor subroutines are available. Nearly all subroutines the user will need are included with the system.
This computer has, as a system table, more than 500 bytes of RAM, the values of which are initialized at bootstrapping and can be redefined by the user. Any system can be set by the user, from the video RAM memory mapping to the keyboard auto repeat interval. By replacing the application RAM cartridge, this computer can function as a BASIC machine, another-language machine, or a communication terminal.

Thus, users who are engaged in software development should become familiar with the internal subroutines and the system table.

 (
#
)
 (
1
)

 (
Chapter 2 Display Handler
)
 (
Chapter 2 Display Handler
)

 (
2
)
 (
#
)
CONTENTS
1. Function of VDP TMS9918A (LSI) 	 2-1
2. VDP register set 	 2-2
3. Four display modes of VDP 	 2-7
4. Processing screen and spare	screen 	 2-15
5. VRAM configuration 	 2-19
6. Viewport 	 2-20
7. Character definition 	 2-23
8. Color definition 	 2-27
9. One-character display routine 	 2-34
10. How to handle control codes	 2-36
11. Two modes for one-character	display 	 2-44
(Overwrite and insert)
12. Character read-on screen 	 2-46
13. One-line display routine 	 2-47
14. One-line read routine 	 2-50
15. Cursor move and cursor out 	 2-51
16. Scrolling and shifting	 2-55
17. Matrix display and read 	 2-60
18. Sentence definition 	 2-63
19. Search for sentence top and	next sentence top 	 2-63
20. Transfer instructions 	 2-67
21. Multiplication routine 	 2-73
22. Other information 	 2-74
2- [bookmark: bookmark2]1 Function of VDP TMS9918A (LSI)
2-1-1 Display mode
The TMS9918A provides the following four display modes:
	Mode
	Resolution (in dots)
	Pattern
size
(in dots)
	No. of patterns
	Color
assignment
	Sprite
	Display
screen

	Graphics
I
	192 x 256
	8x8
	256
	16 colors
	Usable
	24 rows x 32 columns

	Graphics
II
	192 x 256
	8x8
	768
	16 colors
	Usable
	it

	Multi
color
	48 x 64
	1 block 4x4
	-
	16 colors
	Usable
	ii

	Text
	196 x 256
	KD
X
00
	256
	2 colors
	Not
usable
	24 rows x 40 columns

2-1-2 Sprite
The TMS9918A can output 32 animation patterns, called sprites. A sprite can change the screen freely both horizontally and vertically in dot increments and is not restricted by the character screen.
A sprite is characterized by the following items.
1) Each sprite can move freely within the display screen by changing its coordinates. It does not require pattern redefinition.

2) The 32 sprites have assigned priorities. If two or more sprites overlap, the overlapping part of the lower-priority sprite is erased automatically. Hence, three-dimensional expression is easily
 (
2-
1
)
 (
2
-2
)
 (
2-
3
)
available. Users are not required to handle the processing of the shaded part. The sprite priority is ranked from the highest sprite (#0) to the lowest (#31).
3) Up to 256 kinds of patterns of sprite can be established, out of which 32 can be displayed.
4) A sprite consists of sprite patterns, each of which can be magnified by two times.
5) Any one of sixteen sprite colors can be specified.
6) The VDP status is established at one-screen scan completion time.
2- [bookmark: bookmark3]2 VDP register set
The TMS9918A (called VDP) consists of eight write-only registers and one read-only register. The screen display takes place by setting data in the VDP register and write image data in the VRAM (video RAM).
Register #0, Register #1 Register #0
76543210
^	External video signal
Mode selection bit (M3)

Register #1

 (
76543210
)

MAG:	Sprite magnification
SIZE: Sprite size Set to 0.
Mode selection bit (M2)
Mode selection bit (Ml)
IE:	Interrupt enable
BLANK:	Screen display ON/OFF
VRAM selection
External video signal 0:	Input disabled
1:	Input enabled
Display mode selection
	Ml
	M2
	M3
	Display mode

	0
	0
	0
	Graphics I

	0
	0
	1
	Graphics II

	0
	1
	0
	Multi-color

	1
	0
	0
	Text

Sprite magnification
0:	Does not magnify (1:1 display)
1:	Magnified by 4.
Sprite size
0:	8 dots x 8 dots
1:	16 dots x 16 dots
. Interrupt enable
0: 	CPU interrupt disabled.
1: 	CPU interrupt enabled.
. BLANK
0:	Screen erase
1: 	Screen display
. VRAM selection 0:	4K
1: 	8K or 16K
Register #2
 (
Register
#
#
)
 (
Register
#
5
)
 (
0
) (
Sets the higher 4 bits of the pattern name table head address.
)76543210
 (
2-
4
)
 (
2-5
)
 (
2-5
)

 (
76543210
)Register #3

Sets the higher 8 bits of the character color table head address.
Register #4
76543210
[bookmark: bookmark5] (
Sets the higher 3 bits of the character generator table head address.
)L

76543210
 (
Sets the higher 7 bits of the sprite attribute table head address
) (
76543210
) (
Sets the higher 3 bits of the sprite pattern generator table head address.
) (
Register
#1
) (
76543210
)Register 6

Text color "0" Backdrop color
Text color "1"
• Text color "0", backdrop color
Color of the part where each character bit is "0" in the text mode, and the backdrop color. In modes other than the text mode the backdrop color is given.
. Text color "1"
Color of the part where each character bit is "1" in the text mode.

 (
VDP status register (read-only)
)

 (
2-
6
)
 (
2-
8
)
 (
2-
9
)
 (
76543210
) (
5th sprite no. Coincidence flag 5th sprite Interrupt flag
)

. Interrupt flag
When the IE (interrupt enable) bit in this register is set to "l", VDP INT is output after a one-screen scan is completed.
. 5th sprite (5S) and 5th sprite no.
When more than five sprites are on the same horizontal line and the interrupt flag (F) is 0, the fifth sprite bit is set to "1". The fifth sprite number is maintained in the lower 5 bits.
. Coincidence flag
When a screen has two or more coincidence sprites, this flag is set to "1".
The system reads the status for each frame, and therefore, users are not required to read the status.
Subroutine calling sequence
 (
Subroutine name: Address:
Function: Register save:
)VREGI
OCA3H
Initializes the VDP registers. X, Y
The VREGI routine sets the VDP register according to the processing screen information table.
The call takes place after necessary information has been written into the processing screen information table.
2- [bookmark: bookmark6]3 Four display modes of VDP
The VDP TMS9918A has four display modes. The characteristics and procedure for establishing each mode are detailed below.
2-3-1 Graphics I mode (GI mode)
In the graphics I mode 8x8 dot characters can be displayed in 24 rows and 32 columns. A maximum of 256 characters can be defined.
For the character colors, one of the colors of the part where the bit status is "1" can be specified for 8 characters, and one color of a part in the bit "0" status. This means that 32 kinds of different colors can be displayed per 256 characters.
The graphics I mode is the standard mode of this computer.
2-3-2 Graphics II mode (GII mode)
In the graphics II, or GII, mode full graphics are available, and 768 characters can be defined for all of the 768 character positions in 24 rows and 32 columns.
Hence, a particular pattern different from other patterns can be defined for a part where the screen appears.
In the GII mode two colors (the color of the part in the bit "1" status and the color of the part in the bit "0" status) can be specified for one vertical dot and eight horizontal dots.
Hence, the VRAM memory layout must be changed in the GII mode: the character generator is set to 6KB (2KB in GI mode) and the character color table size is set to 6KB (32 bytes in GI mode).
The VRAM memory layout in the GII mode is called layout II (in other modes layout I) for distinguishing these two modes (refer to Attachment: Memory Map).
Both the character generator and character color table occupy 6KB. This means that a screen can be split into three blocks (upper, middle and lower), and that a character generator, character color, and pattern name table can be established for each block.
Backdrop

2-3-3 Multi-color mode
In the multi-color mode color blocks in increments of
4 dots x 4 dots are arranged in 48 rows and 64 columns. Each color block pattern is established by the pattern generator table. A pattern with four vertical characters (16 blocks) is established from every eight bytes counted from the head of the pattern generator table.
 (
VRAM
) (
Relative
address
) (
Row p
) (
1
2
) (
22
23
) (
Pattern
N
) (
(
1
)
) (
Pattern
N
) (
(
2
)
) (
Pattern
) (
N
) (
(3)
)

 (
2-3-6 Establishing procedure for each mode and precautions
)
 (
Establishing the pattern N to 3 rows 3 (4n + 3) causes
)

 (
2-
10
)
 (
2-
12
)
 (
2-
11
)

Color patterns are displayed on the screen as follows.
 (
Color A
Color B
C
D
) (
of the pattern N to be displayed.
)Establishing the pattern N to (1) row 0 (4n rows) causes

Establishing the pattern N to (2) row 2 (4n + 2) causes
 (
Color I
Color J
K
L
)of the pattern N to be displayed.

 (
Color M
Color N
0
P
) (
of the pattern N to be displayed.
)2-3-4 Text mode
In the text mode the character pattern side is split into 24 rows and 40 columns on the screen. However, as the resolution of the entire screen does not change, the number of dots per character is 6 x 8 dots. Hence, two right dots of each character are not displayed.

Up to 256 characters can be established, and two colors can be specified per entire screen: a color for the part in the bit 1 status and a color for the part in the bit 0 status. In the text mode it is handled as a premise not to display a graphic pattern.
2-3-5 Establishing a display mode
A mode is established by initializing the processing screen information table within the system table and resetting the VDP register.

GI mode establishment Subroutine calling sequence
	Subroutine name:
	CMODE

	Address:
	0DD8H

	Function:
	Establishes the GI mode.

	Register save:
	X,Y

	GII mode
	

Subroutine calling sequence
	Subroutine name:
	GMODE

	Address:
	0B1FH

	Function:
	Establishes the GII mode

	Register save:
	X,Y

	Other conditions:
	Layout error
(Other screen is already in the GII mode or multi-color mode.)

	T (text) mode
	

Subroutine calling sequence
	Subroutine name:
	TMODE

	Address:
	0D04H

	Function:
	Establishes the text mode.

	Register save:
	X,Y

 (
M (multi-color) mode
)

 (
(4) Multi-color mode
)

 (
2-
13
)
 (
2-
14
)
 (
2-
15
)
 (
Subroutine calling sequence
) (
Subroutine name:
) (
MMODE
) (
Address:
) (
OC44H
) (
Function:
) (
Establishes the multi-color mode.
) (
Register save:
) (
X,Y
) (
Other conditions:
) (
C = 1 .. Layout error
) (
(Other screen is already in the GII mode.)
) (
Precaution
In every mode, character generators and color tables are initialized by a special routine. Hence, establishing a mode after a color has been set by a user destroys characters and color data defined already.
) (
2-3-7 Precautions for establishing a mode
) (
(1) Graphics I mode
When the processing screen mode is set to the graphic I mode, the following processing takes place:
a. If the preceding screen is in the graphics I
) (
mode, no operation takes place.
)

b. In other modes, the screen and sprite on the screen are cleared, the character generator is initialized, then the color table is initialized. The initial value of the color table shows characters in grey and the background in black.
(2) Graphics II mode
a. When the spare screen is in the graphics II or multi-color mode, a layout error occurs.
b. When the preceding screen is in the graphics II mode, no operation takes place.
c. In other modes, the screen and sprite on the screen are cleared, then the generator and color table are initialized.
(3) Text mode
a. When the preceding screen is in the text mode, no operation takes place.
b. When the preceding screen is in the graphics II mode, the layout is changed.
c. When the preceding screen is not in the text mode, the screen is cleared and the character generator is initialized.
a. When the spare screen is in the graphics II mode, a layout error occurs.
b. The screen and sprite are cleared.
[bookmark: bookmark16]2-4 Processing screen and spare screen
This computer is furnished with 16KB VRAM and has two screen in VRAM. The screen with the smaller number of addresses is called page 0, and the other page 1. On the other hand, in the aspect of the CPU processing, the screen in processing is called a processing screen, the other a spare screen.
The processing screen is capable of freely reading and rewriting VRAM data. In contrast, the spare screen cannot convert nor read VRAM data. But, on both the processing screen and spare screen the display can be optionally switched.

 (
VRAM
(The screen connected to this switch is called the display screen.)
(The screen connected to this
switch is called the processing screen, the other the spare screen.)
)

in the system table.
[bookmark: bookmark17]SVSSSW
76543210
	— Processing screen (0: page 0, 1: page 1)
	 — Display screen	(0: page 0, 1: page 1)
	— The screen that is displayed -
0: The processing screen 1: The spare screen
This computer system has two screen information tables in the system table. One is the processing screen information table and the other is the spare screen information table.
Switching the processing screen between page 0 and page 1 is done by exchanging contents of the two screen information tables.
 (
The screen select switch is built in the SVSSSW located
)
 (
Display screen selection (processing screen/spare screen)
)

Switching of the display screen is operated by displaying one of the two screen information tables.
 (
2-
16
)
 (
2-
18
)
 (
2-
19
)
Screen switching routines and precautions
Processing screen selection
Subroutine calling sequence
Subroutine name:	WRTSC
	Address:
	OE33H

	Function:
	Selects the processing screen

	Input
Registers
	Contents

	Acc
	n n = 0 Selects page 0.

	
	n = 1 Selects page 1.

	
	n > 1 Reverses a page.

Register save:	C,X,Y
Display screen selection Subroutine calling sequence
	Subroutine
	name: DSPSC

	Address:
	OC64H

	Function:
	Selects the display screen.

	Input
Registers
	Contents

	Acc
	n n = 0 Displays page 0.

	
	n = 1 Displays page 1.

	
	n > 1 Reverses a display page.

Register save:	X,Y

Subroutine calling sequence
 (
Subroutine name: Address:
Function:
)FRMSC
OC77H
Selects the display screen,
Input
Registers
	Acc
	n
	n =
	0
	Displays
	the
	processing

	
	
	
	
	screen.
	
	

	
	
	n =
	1
	Displays
	the
	spare screen.

	
	
	n >
	1
	Reverses
	the
	screen.

Contents

Subroutine calling sequence
 (
Subroutine name: Address:
Function:
Register save:
)NRMSC
0C5CH
Sets both the display screen and processing screen to page 0.
X,Y
Display screen change
Subroutine calling sequence
Subroutine name:	RVDSPP
Address:	OC62H
Function:	Reverses the display screen.
Register save:	X,Y
Processing screen change
Subroutine calling sequence
Subroutine name:	RVWRTP
Address:	0E31H
Function:	Reverses the processing screen,
Register save:	B,C
Display screen and processing screen change
Subroutine calling sequence
Subroutine name:	REVSC
Address:	0E2EH
 (
Reverses both the display screen and processing screen,
X, Y
)Function:
Register save:
[bookmark: bookmark18]2-5 VRAM configuration (VRAM layout)
This system has four display modes: GI, GII, M, and T. The GI, M and T modes require a VRAM capacity of about 4KB for one screen. The GII mode requires a VRAM capacity of about 13KB for one screen. Hence, the VRAM layout depends on whether the GII mode is used or not.
(See Attachment: Memory Map)
Layout I: When the GII mode is not used, the 8 KB of VRAM between 0000H and 1FFFH are unused and released for the users.
Layout II: When the GII mode is used, the entire VRAM is displayed on the screen.
The layout is switched automatically by the system when a user calls the subroutine to set a mode. Hence, no action required by the users.
There are two points of which the user should be aware:
(1) In layout 1, the area of 8KB from 0000H on the VRAM is unused but layout II uses this area, so data is destroyed if the layout is switched when a user stores data in this area.
(2) In layout II, three tables (sprite pattern generator table in the GII mode, and sprite pattern generator and character generator of other screens) are defined in the same area and overlap in memory. Hence, if the sprite is defined in the GII mode and the display is switched to the other screen, characters on the screen may be destroyed.
[bookmark: bookmark19]2-6 Viewport
The viewport is a small screen that is logically established inside of the physical screen. Screen control functions can be performed only on the viewport, leaving the rest of the screen unchanged.

Establishing a viewport allows various screen control to be performed only within the viewport; the screen outside the viewport remains unchanged.

 (
Scree]
heighi
j
r
1
t
i
View
port
<— Screen —•» width
)Definition of left margin, upper margin, height and width of vewport

 (
2-
22
)
 (
2-
21
)

 (
0
) (
(T mode)
) (
23
) (
1
Upper margin
Left
margin
J
 (Xi ,Yi)
Width
Height
Right
margin
f. .
(X
2
 .Y
2
ri
Lower margin
j
;
) (
Y
direc
tion
) (
X direction
0
► 3i or 39
)

Establishing a viewport requires a left margin, upper margin, right margin, and lower margin. Each parameter is given by a coordinate in character units.
Let the character coordinate of the upper left corner of the viewport be (X^, Y^) and the character coordinate of the lower right corner be (X2, Y2). Then
Left margin of viewport =

Upper margin of viewport = Right margin of viewport = Lower margin of viewport =
Viewport establishment
Subroutine calling sequence
Subroutine name:	VIEWP
	Address:
	135CH

	Function:
	Establishes a viewport.

	Input
Registers
	Contents

	H
	Left margin

	L
	Right margin

	D
	Upper margin

	E
	Lower margin

Register save:	X,Y
Other conditions:	Cy = 1 Range error
Tried to establish a viewport larger than the screen.
Establishing a viewport larger than the screen causes an error.
VIEWRS
 (
Subroutine name: Address:
Function: Register save:
)1353H
Releases the viewport. X,Y
Changing a mode during the viewport establishment releases the viewport automatically.
[bookmark: bookmark21]2-7 Character definition
Binary 8-byte image data is handled as one character.
[bookmark: bookmark22]7 6 5 4 3 2 1 0
	
	
	r
	
	A
	1
i
	
	

	
	
	
	
	
	
	
	

 (
Subroutine calling sequence
)
 (
Set character routines and their use
)
 (
Set character routines and their use
)

 (
2-
23
)
 (
2-
24
)
 (
2-
#
)

 (
Subroutine calling sequence
) (
Subroutine name:
STCHR
Adress:
OE59H
Function:
Establishes
character patterns,
sprite patterns, and character colors in the GII mode.
) (
Input
Registers
Acc
) (
Contents
n (character set no.) n = 0: Sprite pattern 1:
Character set 1
) (
B
C
) (
2:
"
2
3:
"
3
4:
Color set
1
5:
"
2
6:
"
3
No. of characters
) (
Establishment start code no.
) (
H,L:
) (
Data head address
) (
Register save:
X, Y
Other conditions:
Cy = 1 Parameter inadequqte
(Value over 7 set in Acc, etc,) Mode error
Values of 2 to 6 were set in the Acc in modes other than GII.
)

	Acc: n = 0
	Sprite pattern establishment

	3
ii
	Character pattern established (all modes)

	n = 2
	Block 2 character established in the GII mode.

	n = 3
	Block 3 character established in the GII mode.

	ii
C
	Block 1 color established in the GII mode

	n = 5
	Block 2 color established in the GII mode

	n = 6
	Block 3 color established in the GII mode

	B: Number
	of characters to be established.

C:	Code no. of a character head to be determined.
H,L: Data head address
Character pattern establishment
Subroutine calling sequence
Subroutine name:	STCCHR
	Address:
	OE55H

	Function:
	Establishes characters in modes other than the GII mode.
(When Acc is set to 1 by STCHR)

	Input
Registers
	Contents

	B
	Number of characters to be established.

	C
	Establishment start code no.

	H, L
	Data head address

Register save:	X,Y
Area used in modes other than the GII mode.
Subroutine calling sequence
Subroutine	name:	LCPAT
Address:	OD89H
Function:	Initializes	character	patterns.
Register save:	X,Y
This routine initializes the entire VRAM character pattern generator the default status. For the default character pattern, see the attachment.
Character pattern read out
Subroutine calling sequence
Subroutine name:	RDCHR
Address:	OE75H
Function:	Reads	out character patterns,
sprite patterns and color data
	
	
	in the GII
	mode.

	Input
	
	
	

	Registers
	Contents
	

	Acc
	n
	
	

	
	n = 0:
	Strite
	

	
	1:
	Character
	set 1

	
	2:
	it
	2

	
	3:
	ii
	3

	
	4:
	Color set
	1

	
	5:
	ii
	2

	
	6:
	ii
	3

 (
Character pattern initialization
)
 (
Character pattern initialization
)

 (
2-
25
)
 (
2-
26
)
 (
2-
#
)
C	Read-out start code no.
H,L	Read-in buffer head address
Register	save:	X,Y
Other conditions:	C	=1 ••• Parameters	inadequate.
(When more	than 7	parameters are	set in	Acc)
Mode error
(In modes other than the GII mode, tried to read out in the GII mode.)
"RDCHR" is processed in the reverse procedure to "STCHR" and reads into main memory such data as character patterns, color patterns, etc. already
set in VRAM.
[bookmark: bookmark23]2-8 Color definition
 (
B
Number of characters
)

Colors defined by this computer can be of three kinds: character color, background color, and drop-out color. The three kinds of colors are specified by one of 16 color codes.
 (
2-
27
)
 (
2-
30
)
 (
2-
29
)
"Transparent color" allows the background color to be seen.
 (
Color
Code
Transparent
0
Black
1
Green
2
Light green
3
Dark blue
4
Light blue
5
Dark red
6
Cyan
7
Red
8
Light red
9
Dark yellow
A
Light yellow
B
Dark green
C
Magenta
D
Grey
E
White
F
)2-8-1 Establishment of character colors and background colors in graphics I mode
In the graphics I mode, a character color and a background color can be set for every eight characters. Hence, a character is split into 32 blocks (listed below) to establish the block color.
 (
Block
No.
Code No.
Block
No.
Code No.
0
0 - 7 (' 0-' 7)
16
128 - 135 (' 80- ' 87)
1
8 — 15 (' 8~' F)
17
136 - 143 (' 88- ' 8F)
2
16 — 23 (' 10— ' 17)
18
144 - 151 (' 90- ' 97)
3
24 — 31 (' 18- ' IF)
19
152 - 159 ('
98-' 9F)
4
32 — 39 (' 20— ' 27)
20
160
 —
167

('
 A0-' A7)
5
40 — 47 (' 28~ ' 2F)
21
168 - 175 (' A8- ' AF)
6
48 — 55 (' 30— ' 37)
22
176 - 183 (' B0- ' B7)
7
56 ~ 63 (' 38— ' 3F)
23
184 - 191 (' B8- ' BF)
8
64 — 71 (' 40- ' 47)
24
192 - 199 (' CO- ' C7)
9
72 — 79 (' 48- ' 4F)
25
200 - 207 (' C8- ' CF)
10
80 — 87 (' 50— ' 57)
26
208 - 215 (' DO- ' D7)
11
88 — 95 (' 58— ' 5F)
27
216 - 223 (' D8- ' DF)
12
96 — 103 (' 60- ' 67)
28
224 - 231 ('
E0-' E7)
13
104 - 111 (' 68-' 6F)
29
232 - 239 (' E8- ' EF)
14
112 - 119 (' 70-' 77)
30
240 - 247 (' F0- ' F7)
15
120 - 127 <' 78- ' 7F)
31
248 - 255 (' F8- ' FF)
Out of 8 bits for the character colors and background colors, the higher 4 bits determine the character color and the lower 4 bits determine the background color.
)Subroutine calling sequence
Subroutine name:	STICOL
 (
Address: Function:
)0ED3H
Establishes character colors and background colors in the GI mode.
Input
Registers	Contents
B	Code no.
C	Color data
Register save:	B,C,X,Y
Other conditions:	Mode error
(In modes other than the GI mode)

 (
Remarks:
)Color data structure
T	i	1		r	i	.	
	1	1	!		I	I	*	
Character color	Background color data
Subroutine calling sequence
Subroutine name:	STCTBL
	Address:
	ODF8H

	Function:
	Initializes the color table

	
	in the GI mode.

Register save:	C,D,E,H,L,X,Y
	Remarks:
	The initialized data uses

	
	values stored in BDCOLA

	
	(709FH) of the screen

	
	information table.

"STCBL" sets the character color to grey and the back ground color to black at the color table initialization in the GI mode.
Subroutine calling sequence Subroutine name:	ITG2M
	Address:
	ODFBH

	Function:
	Initializes color tables

	
	for the GII mode.

	Input
Registers
	Contents

	B ,C
	Number of output bytes (In this case, store 1800H in the

	
	B and C registers.)

Register save:	E,H,L

"ITG2M" sets the character color to grey and background color to black at the color table initialization in the GII mode.
2-8-2 Color establishment in graphics II mode
 (
Bit
)In the GII mode, two colors can be specified for each byte of the 8x8 pattern. This means that eight bytes of data are needed to specify the color of one character.	(sS^i

 (
Bit =
"0"
)□
 (
2-
31
)
 (
2-
32
)
 (
2-
#
)

 (
7 6 5
4 3 2
1
0
) (
Color
color
i. i
color
data
Green
Black
21H
Green
Black
21H
Green
Black
21H
Green
Red
28H
Green
Red
28H
Green
Black
21H
Green
Black
21H
Yellow
Black
B1H
)

 (
Sets 4, 5, and 6 in Acc
) (
Subrouting calling sequence
) (
Subroutine name:
STCHR
Address:
OE59H
) (
Function:
Establishes character patterns,
sprite patterns and characters the GII mode.
) (
Input
Registers
Acc
) (
Contents
N (character set no.) n = 0: Sprite pattern 1:
Sprite pattern 1
) (
2:
"
2
3:
"
3
4: Color set
1
5:
"
2
6:
”
3
) (
B
C
) (
H,L
) (
Number of characters Establishment start code no. Data head address
) (
Register save:
X,Y
Other conditions:
Cy=l...Parameters inadequate
(Values over 7 are set in Acc
f
 etc.)
) (
Mode error
(Tried to establish in GII mode, although not in the GII mode.)
)

In the text mode two colors, the character color and the background color, are specified for each screen. (In the T mode the background color and backdrop color are always the same.)
Subroutine calling sequence
	Subroutine
	name: STFCOL

	Address:
	OC83H

	Function:
	Changes character colors in the text mode.

	Input
Registers
	Contents

	B
	Establishes a character color by the lower 4 bits.

Register save:	D,E,X,Y
	Remarks:
	When the display mode is not the text mode, rewrites a value (higher 4 bits of BDCOLA) the screen information table and terminales. In the text mode, changes the character color.

 (
2-8-3 Color establishment in text mode
)
 (
2-8-4 Backdrop color establishment
)

 (
2-
33
)
 (
2-
34
)
 (
2-
35
)
Subroutine calling sequence
Subroutine	name:	STBCOL
Address:	OC97H
Function:	Establishes	boundary	colors.
Input
Registers	Contents
B	Boundary color (establishes to
lower 4 bits)
Register save:	D,E,H,L,X,Y
Remarks:	Establishes	a	boundary	color
without regard to the screen mode.
[bookmark: bookmark25]2-9 One-character display routine
The procedure required for displaying characters on the display screen is only the write character code nos. to be displayed in the position specified by the VRAM pattern name table. The control codes (00H - 1FH) are usually not handled as characters, but implement processing specified by the control code. On the other hand, it is possible to display a control code as a character by switching the*display mode.
Basic one-character display processing
Subrouting calling sequence
Subroutine name:	DSPCH
	Address:
	1088H

	Function:
	Displays one * character.

	Input
Registers
	Contents

	Acc
	Character code to be displayed.

	Register save:
	Acc, PSW, B, C, D, E, H, L, X, Y

	Remarks:
	Displays one character in the

	
	current cursor position and

	
	moves the cursor to the next

	
	position.

DSPCH changes the processing status by the DIFLGA status of the processing screen information.
Subroutine calling sequence
Subroutine name:	DSPCHA
	Address:
	1083H

	Function:
	Displays one character

	Input
Registers
	Contents

	Acc
	Display character code

	Register save:
	Acc, PSW,C,D,E,H,L,X,Y

	Remarks:
	The control code is executed.

DESPCHB
 (
Subroutine name: Address:
Function:
)1082H
Displays one character,
 (
Input
Registers
Acc
Register save: Remarks:
)Contents
Display character code
Acc, PSW,C,D,E,H,L,X,Y
Control codes are handled as characters.
[bookmark: bookmark26]2-10 How to handle control codes I
Kinds and processing of each control code are listed below. (The control codes are executed by calling the control code subroutines or using DSPCHA.)
Code 00H Ignore: Regards as a terminator of the
line end.
01H	Ignore
02H	Searches the sentence head.
03H	Lower scroll
04H	Left scroll
05H	Upper scroll
06H	Right scroll
07H	Bell
08H	Delete
09H	Tabulation
 (
Subroutine calling sequence
)

OAH	Line feed
 (
2-
36
)
 (
2-
38
)
 (
2-
39
)
	Code OBH
	Home position
(Moves the cursor to the upper left corner of the viewport.)

	" OCH
	Clear screen

	" ODH
	Carriage return

	" OEH
	Searches for the next sentence head.

	" OFH
	Overwrite mode

	" 10H
	Insert mode

	" 11H
	Multi-color mode

	" 12H
	Graphics 1 mode

	" 13H
	Graphics II mode

	" 14H
	Text mode

	" 15H
	Sets both the display screen and processing screen to page 0.

	" 16H
	Switches both the display screen and process ing screen.

	" 17H
	Carriage return

	" 18H
	Cancel

	" 19H
	Display page switching

	" 1AH
	Processing page switching

	" 1BH
	No operation

	" 1CH
	Moves the cursor right by one character.

	" 1DH
	Moves the cursor left by one character.

	" 1EH
	Moves the cursor up by one character.

	" 1FH
	Moves the cursor down by one character.

Control codes not detailed in other sections are described below.
BELL
A single sound is output by a sound generator for a fixed time.
Subroutine calling sequence
	Subroutine name:
	BEL

	Address:
	1176H

	Function:
	Outputs the bell sounds.

	Register save:
	Acc PSW, C,D,E,H,L

The duration and pitch of MBEL" are set by values in the processing screen information table.
Subroutine calling sequence
	Subroutine name:
	BELK

	Address:
	116AH

	Function:
	Outputs the keyboard click

Register save:	Acc, PSW, C,D,E,L
The keyboard click is processed, and duration and pitch of "BELK" are set by values in the keyboard information table.
DELETE
Erases one of characters in the cursor position. Unless there is a character in the cursor position, erases the preceding character. Unless there is a character in the cursor position when the cursor is positioned in the line head, nothing happens.
After the character has been deleted, the cursor returns to the preceding position. If the cursor position is followed by characters, the characters are moved forward one by one. In this case, the cursor position remains unchanged.
Subroutine calling sequence
Subroutine name:	DELTC
Address:	OFABB
Function:	Deletes	one	character.
Register save:	Acc, PSW,	B,C,D,H
. TABULATION
Partitions the screen into eight-character zones. Others tabs can be set. When the viewport is cut, eight-character tabs are set within the viewport.

 (
Subroutine calling sequence
)
 (
Subroutine calling sequence
)
 (
□Tab^ ^
) (
Tab
) (
□
) (
Tab
) (
*
) (
Without viewport
024602460
) (
□ Tab
Tab
) (
With viewport
) (
1158H
Tabulation Acc, PSW,D
The size of the tab is set to
) (
Subroutine calling sequence
Subroutine name:
TABLT
Address:
Function:
Register save:
Remarks:
) (
eight characters.
) (
"TABLT" fills the tabulated part with spaces (20H).
)0246024602460	2	460
 (
2-
40
)
 (
2-
#
)
 (
2-
41
)
Subroutine name:	TABLAT
	Address:
	115AH

	Function:
	Tabulation, but can specify

	
	the tab code.

	Input
Register
	Contents

	Acc
	Code to tabulate.

	Register save:
	Acc, PSW, C

	Remarks:
	The size of the tab is set to

	
	eight characters.

"TABLAT" uses a code specified to Acc for the tabulation. LINE FEED
Moves the screen to the next line. When the cursor is positioned in the bottom line, scrolls one line up within the viewport, but does not change the cursor position.
Subroutine calling sequence
Subroutine name:	LFEED
	Address:
	10F0H

	Function:
	Line feed.

	Register save:
	Acc, PSW, B,C,D,E,H,L,X,Y

	HOME POSITION
	

Moves the cursor to the home position (upper left corner), of the viewport.
Subroutine name:	HOMEP
	Address:
	13B6H

	Function:
	Home position

Register save:	Acc,PSW, B,C,D,E,H,L,X,Y
CLEAR SCREEN
Fills the screen with null characters (00H). Subroutine calling sequence
	Subroutine
	name: CLRSC

	Address:
	1393H

	Function:
	Clears the viewport.

Register save:	Acc,PSW,B,C,D,E,H,L,X,Y
Subroutine calling sequence
	Subroutine
	name: CLRSCX

	Address:
	1394H

	Function:
	Fills the viewport.

	
	with the same code.

	Input
Registers
	Contents

	Acc
	Codes to be established.

Register save:	Acc, PSW,B,C,D,E,H,L

 (
Subroutine calling sequence
)

 (
2-
42
)
 (
2-
44
)
 (
2-
45
)
CARRIAGE RETURN
Subroutine calling sequence
	Subroutine name:
	CRET

	Address:
	13CDH

	Function:
	Carriage return

	Resister save:
	Acc, PSW, B,C,D,E,H,L

"CRET" returns the cursor to the line head. Subroutine calling sequence
	Subroutine name:
	CRETL

	Address:
	10EDH

	Function:
	Carriage return, line feed

	Register save:
	Acc,PSW,B,C,D,E,H,L

"CRETL" moves the cursor to the next line head. CANCEL
Fills spaces preceded by the cursor position of the line with null characters.
Subroutine calling sequence
	Subroutine name:
	CANCL

	Address:
	13BBH

	Function:
	Cancel

Register save:	Acc,PSW,B,C,D,E,H,L

[bookmark: bookmark28]2-11 Two modes for one-character display
The one-character display mode has two representations:
Overwrite mode Insertion mode
This manual will refer to the overwrite mode as mode 0 and the insertion mode as mode I.
Specified characters in the mode 0 are displayed at the cursor, on top of characters previously displayed, which are deleted. When characters are displayed in the lower right corner, the characters are scrolled up by one line within the viewport, and the cursor moves to the lower left corner.
When a null character (00H) is displayed in mode I, at the cursor position, the character is displayed in that position, as in mode 0. When a non-null character is displayed, the characters after the cursor in the sentence are shifted backwards by one character, and the new character is displayed in tne cursor position. If the shift results in the deletion of a separation code (null character, 00H) between the shifted sentence and the next sentence, insert one blank line (all null characters) between the shifted sentence and the next sentence. Then, the existing bottom line is deleted. If non-null characters are displayed on the whole bottom line, the characters scroll up by one line within the viewport.

In both modes, if a null character is displayed in the cursor position, all null characters positioned prior to the display in the left side of the viewport are changed to spaces (20H).
 (
If "A" is displayed in the cursor position: Cursor
) (
Row
) (
Null
) (
Null
)The overwrite mode and insertion mode are selected by DIFLGA DM0DE2 of the processing screen information table.

Overwrite mode establishment
Subroutine calling sequence
 (
STOVRM
0F19H
) (
Establishes the overwrite mode.
All registers
)Subroutine name: Address:
Function:
Register save:
Insertion mode establishment
Subroutine calling sequence
Subroutine name 2	STINSM
Address:	0F1EH
Function:	Establishes	the	insertion	mode.
Register save:	X,Y
A mode once established continues until reestablishment takes place.
[bookmark: bookmark29]2-12 Character read-on screen
Subroutine calling sequence
	Subroutine
	name: RDSCH

	Address:
	14B1H

	Function:
	Gets a character code on

	
	the screen.

	Input
Registers
	Contents

	D
	Position X

	E
	Position Y

	Output
Registers
	Contents

	Acc
	Character code

Register save:	X,Y
Other conditions:	Cy=1 T^e sPecified position
is not in the viewport

 (
Subroutine calling sequence
)
This routine gets the character code in a specified position. When the specified position is outside of the viewport, an error occurs.

 (
2-
50
)
 (
2-
51
)
Subroutine name:	RDSCHA
Address:	14ACH
Function:	Gets the	character code in the
current cursor position.
Output
Registers	Contents
H,L	Address in VRAM	of the current cursor
Acc	Character code
Register save:	B,C,D,E,X,Y
This routine gets the character code at the current cursor position.
[bookmark: bookmark30]2-13 One-line display routine
Subroutine calling sequence
 (
Address:
Function:
Input
Registers
B
H ,L
) (
1063H
Display
Contents
Max. number of Top address of
) (
one line.
) (
characters texts displayed
)Subroutine name:	DSPLN

 (
Output
Registers
B
)Contents
Max. number of characters - number of display characters
 (
H ,L
Acc
Register save:
)Address of last display character + 1 Last display character code C,D,E,X,Y

"DSPLN" continues processing until the maximum number of characters set in the B register is output or a terminator (Null or CR) is output. Control code handling depends on the then flag.
Subroutine calling sequence
Subroutine	name:	DSPLTB
Address:	105BH
Function:	One-line	display (Continues the
display until a terminator appears)
Input
Registers Contents
H,L	Top address of text displayed
Output
Registers Contents
H,L	Address of last display character +1
Acc	Last display character
Register save:	X,Y
Remarks:	The max. number of display characters is
256 characters. A control code is displayed as a character.
"DSPLTB" limits the number of characters to 256 characters and continues output until a terminator appears within the 256 characters). Control codes are handled as characters.
	Subroutine
	name s DSPLTA

	Address:
	105CH

	Function:
	One-line display (displays up
to a terminator)

	Input
Registers
	Contents

	H ,L
	Top address of test displayed

	Output
Registers
	Contents

	H,L
	Address of last display character + 1

	Acc
	Last display character

Register save:	X,Y

	Remarks:
	The max. number of display

	
	characters is 256 characters.

	
	The control code is executed.

"DSPLTA" continues output until a terminator appears, and the control code executes the processing.
[bookmark: bookmark31]2-14 One-line read routine
Subroutine calling sequence
Subroutine name:	RDSTM
	Address:
	OEECH

	Function:
	Reads sentences on the screen.

	Input
Registers
	Contents

	B
	Max. number of characters that can

	
	be input (Data buffer size)

	D
	Input start position X

	E
	H

	H, L
	Input buffer top address

	Output
Registers
	Contents

	Acc
	Last input character (usually return code)

	B
	Max. number of input characters

	
	- number of characters actually

	
	input.

	H,L
	(Address of last input characters) + 1

	Register save:
	C, Y

Other conditions: C =1 The number of input characters
y
exceeds the data butter size. Reads sentences on the screen.
2-15 Cursor move and cursor out 2-15-1 Cursor move
Subroutine calling sequence
 (
Subroutine name: Address:
Function:
)MV ACS 13DDH
 (
Subroutine calling sequence
)
 (
2-15-2 Control cursor move
)
 (
Input
Registers
) (
D
E
) (
Contents
Position X
" Y
)Changes the cursor position.
 (
2-
52
)
 (
2-
54
)
 (
2-
53
)

Output
Registers	Contents
H ,L	Address on the cursor VRAM
Register save:	X,Y
Other conditions: -128<x<127	-128<Y<127
Cy=l Other than the viewport were specified.
This routine moves the cursor to a specified position. It outputs the cursor address in VRAM to the H, L registers, and stores it a save area of the cursor address of the processing screen information table.
Subroutine name:	STPCU
Address:	1100H
Function:	Moves the cursor position
by one character.
Input
Registers	Contents
Acc	Move direction n
n = 0 ... Left
1 ... Right
2 ... Up
3 ... Down
Register save:	B,C,X,Y
 (
Other conditions:
)C =1 The cursor is outside Y
the viewport.
The cursor is moved up, down, left, or right in one-character steps to the value set in Acc.
Subroutine calling sequence
	Subroutine name:
	LFTAW, RGTAW,
	UPRAW, LWRAW

	Address:
	10FFH, 10FCH,
	10F9H, 10F6H

	Move direction:
	Left, Right,
	Up, Down

	Register save:
	X,Y
	

Set a value in Acc to call the preceding "STPCU".
Auxiliary subroutine of cursor move.
"GCURSA" is an internal subroutine of "MVACS" and outputs a cursor address (VRAM) to the HL register.

Moves the cursor up, down, left, or right.
[bookmark: bookmark32]t	i

The cursor moves within the viewport as shown above.
(1) Move the cursor up. When the cursor moves above the top of the viewport, it reappears at the bottom of the same column.
(2) Move the cursor down. When the cursor moves below the bottom of the viewport, it reappears at
the top of the same column.
(3) Move the cursor to the right. When the cursor moves past the right end of the viewport, it reappears at the left end one row lower.
(5) Move the cursor to the right. When the cursor
moves past the lower right corner of the viewport, it reappears at the upper left corner.
(5) Move the cursor to the left. When the cursor moves past the left end of the viewport, it appears
at the right end one row upper.
(6) Move the cursor to the left. When the cursor moves past the upper left corner of the viewport, it reappears at the upper right corner.
The following messages are provided to indicate the next position of the cursor.
Subroutine calling sequence
Subroutine name:	STPCUL,	STPCUR,	STPCUU,	STPCUD
Address:	1134H,	1116H,	1147H,	1126H
Move direction:	Left,	Right,	Up,	Down
	Function:
	Calculates the next cursor

	
	position.

	Input
Registers
	Contents

	D
	Current position X

	E
	" Y

	Output
Registers
	Contents

	D
	Next position X

	E
	" Y

Register save:	B,C,H,L,X,Y

 (
2-15-3 Cursor out
)

 (
2-
55
)
 (
2-
58
)
 (
2-
57
)
"Cursor out" occurs when the cursor moves out of the viewport. Usually this cannot occur. But, in some cases, the cursor must be moved outside the viewport and must be brought back into the viewport.
[bookmark: bookmark33]2-16 Scrolling and shifting
 (
Inside the viewport
Inside the viewport
)2-16-1 Scrolling moves rows or columns within the viewport up, down, left, and right. Information deleted from the viewport by the move is not saved. In this case, the cursor position does not change. New rows or columns are filled with null characters.

Scrolling up
Subroutine calling sequence
Subroutine name:	SCRLF, SCRRG, SCRUP, SCRDW
 (
Address:
Move direction: Function
)130AH, 12F9H, 12B3H, 12BFH Left, Right, Up, Down Scrolling
In case of a right scroll, the
left side is filled with spaces (26H)
 (
Register save:
)Y (SCRUP and SCRDW reserve X)
 (
2-16-2 Shifting
)The left shift and right shift move a sentence left or right by one character from the cursor position.
Shifting right
Subroutine calling sequence Subroutine name:	SIFTR
	Address:
	0FD3H

	Function:
	Right shift

	
	(Inserts one character in

	
	[bookmark: _GoBack]the current position and shifts the remaining characters

	
	rightwards by one character.)

	Input
Registers
	Contents

	Acc
	Character code displayed

	D
	Shift start position X

	E
	" Y

	Output
Registers
	Contents

	D
	Line end position X after shift completion

	E
	ii y "

Register save:	E,X,Y
Other conditions:	C =1 Frame over
Acc Last character code at the frame over time
The right shift shifts a character string to the right, from a position indicated by D,E to the line end by one character.
A. A carry is not set.
	Acc— * A "
y Shift start * position
	
	Shift start >/ position

	~w~
	
	™ ~~T~

	1 1
	
	m

	/
	
	/

	Line end
	
	Line end

	
	
	after shift

	Acc— “ B *
Shift start y end
	
	

	VA
	
	

	Wa
	
	

	/
	
	

	Line end
	
	Line end after shift

 (
2—51
)
 (
2—51
)
B. A carry is set.
	Acc— “ C *
	
	

	Shift start y/ position
	
	

	m
	
	cm

		L
	
	

	/
	

Line end	Line end (within viewport)

* Line end = 00H Left shift
Shifting left
Subroutine calling sequence Subroutine name:	SIFTL
Address:	OFD3H
Function:	Deletes one character and
shifts the remainder of the line left.
Input
Registers Contents
D	Delete position X
E	"	Y
Register save:	X,Y
The left shift shifts character strings left from a position given by D,E to the line end by one character. When there is only a line end, only the line end is shifted left. Even if a specified position is a sentence top, the shift takes place.

 (
Shift start
y/
 position
A character previously positioned in the shift sta^t position.
*
~m

I
W

m
m
A
/
Line end
/
Line end
)Shifting down
Subroutine calling sequence
Subroutine name:	SIFTD
 (
Address:
Function:
Input Register
E
Register save
)103CH
Down shift Contents
Shift start position X,Y
The down shift moves lines down beyond a line specified by E by one line and fills a specified line with null characters.
	
	
	

	
	
	

		 II
	Spe- cified line
	n

		II
	
		Null		'

	1 1
	
	

	
	
	

	
	
	

Specified line	~1

[bookmark: bookmark34]2-17 Matrix display and read
2-17-1 Matrix display
Subroutine calling sequence Subroutine name:	DSPMX
	Address:
	11EDH

	Function:
	Matrix display

	Input
Registers
	Contents

	B
	Number of columns

	C
	Number of rows

	H, L
	Data top address

	Output
Registers
	Contents

	H,L
	Address of last display data + 1

Register save:	X,Y
This routine uses a specified column to delimit specified data from the current cursor position and displays the data. The cursor changes data neither before or after the displayed data.
 (
2-
58
)
 (
2-
62
)
 (
2-
63
)
Part outside the viewport is not displayed nor scrolled.

 (
Part not displayed (Outside viewport)
) (
Part displayed
) (
Cursor position
)

Such an operation procedure as above is also provided.

[bookmark: bookmark35](H)
 (
2-17
) (
^ Display
) (
-2 Row and column read
) (
Subroutine calling sequence Subroutine name:
RDSMX
) (
Address: Function:
Input
Registers
B
C
H, L
Output
Registers
H, L
) (
120EH
Reads the matrix.
Contents
Column
Row
Top address of read buffer
Contents
Address of last read data + 1
) (
Register save:
) (
X,Y
)

 (
This is the reverse procedure to "DSPMX".
) (
It reads specified row and column data from the
) (
current cursor position. Part run out from the
) (
viewport is filled with null character codes.
) (
2-18 Sentence definition (as per the screen editor)
A sentence is defined as the interval between the left end of the viewport and a null character (00H).
2-19 Search of sentence top and next sentence top
Subroutine calling sequence
) (
Subroutine name:
) (
SCTOS
) (
Address:
) (
119EH
) (
Function:
) (
Searches the sentence top.
) (
Output
Registers
Contents
) (
D
) (
Sentence top position X
) (
E
) (
n
) (
y
) (
Register save:
) (
X,Y
)

Searches the sentence top and outputs the value to DE. Processing to move the cursor to the top of the sentence will be detailed later ("SCTOSD")

 (
Subroutine calling sequence
)

 (
2-
64
)
 (
2-
68
)
 (
2-
67
)
Without a sentence
	Sentence Null 1 /
	
	

	W7777777MA
	
	'//////////////A

	■
	>
	i 	

	t /
Null Cursor
position
	
	A carry is set.

Searches for the top of the next sentence.
Subroutine calling sequence
Subroutine name:	SNTOS
Address:	11CAH
Function:	Searches	for the next sentence
top.

Output
 (
Contents
)Registers
D	Next sentence top position X
E	"	Y
Register save:	X,Y
Searches for the top of the next sentence and outputs the location to DE. "SNTOSD" moves the cursor to the top of the next sentence.

	Cursor position /
	
	

	y////////////zm
	
	W//////////A

	
	>
	1

	t
Null
	
	\ \
(D) (E) Nul1

	
	
	

	
	?
	

	W////M///////////////A
	
	W/////////////7777y//////

	W///M 	
	
	I

Cursor position
A carry is set.

[bookmark: bookmark38]\

 (
Subroutine name: Address:
Function:
Resister save:
) (
SCTOSD
13D5H
Moves the cursor to the sentence top.
X,Y
) (
"SCTOSD" moves the cursor to the top of the sentence. This corresponds to control code "02H" (control "B").
) (
Surboutine calling sequence
Subroutine name:
SNTOSD
Address:
13DAH
Function:
) (
Moves the cursor to the top of the next sentence.
) (
Register save:
) (
X,Y
) (
"SNTOSD" moves the cursor to the top of the next sentence. This corresponds to control code "OEH" (control "N").
)

 (
2-20 Transfer instructions
)This section describes transfer instructions between the main memory and VRAM.
Subroutine calling sequence
	Subroutine
	name: PBVRAM

	Address:
	14BDH

	Function:
	Writes 1 byte of data to VRAM

	Input
Registers
	Contents

	Acc
	Data written

	H,L
	Address written

Register save:	All registers
This subroutine writes one byte into VRAM.
Subroutine calling sequence
	Subroutine
	name: GBVRAM

	Address:
	14C5H

	Function:
	Reads 1 byte data from VRAM.

	Input
Registers
	Contents

	H,L
	Read-out address

	Output
Register
	Contents

	Acc
	Read-out data

Register save:	Others than Acc
This subroutine reads one byte from VRAM, PBV, and GBV.

Subroutine name:	PBVRID
	Address:
	0010H

	Function:
	Output 1 byte to VRAM

	Input
Registers
	Contents

	Acc
	Output data

	H,L
	VRAM address

Register save:	All registers
	Remarks:
	Using RST2 (Code D7H)

	
	The difference infunction of

	
	PBVRAM is that there is a no

	
	interrupt condition.

Subroutine calling sequence
	Subroutine
	name: GBVRID

	Address:
	0018H

	Function:
	Read-out 1 byte data from VRAM

	Input
Registers
	Contents

	H,L
	Read-out address

	Output
Registers
	Contents

	Acc
	Data

Register save:	Others than Acc
	Remarks:
	Using RST3 (Code DFH)
There is a no-interrupt con

	
	dition .

. Block transfer instruction
The block transfer instruction consists of the follow' ing:
Main memory 		 VRAM
VRAM 	 Main	memory
VRAM 	 VRAM
Depending on the operation, others are available.
(1) Main memory
Subroutine calling sequence
	Subroutine
	name: WDVPM

	Address:
	14 6 OH

	Function:
	Transfers data from main memory to VRAM.

	Input
Registers
	Contents

	H ,L
	Data buffer top address (CPU memory)

	D,E
	VRAM destination address

	B
	Number of bytes of transfer data

Register save:	X,Y
 (
Subroutine calling sequence
)
 (
Subroutine calling sequence
)
"WDVPM" writes data from main memory to VRAM. The counter is one byte.
 (
2-62
)
 (
2-7Q
)
 (
2-7Q
)
	Subroutine
	name: CVTIR

	Address:
	0E61H

	Function:
	Transfers data to VRAM.

	Input
Registers
	Contents

	H,L
	Data buffer top address

	
	(CPU memory)

	D,E
	Destination address

	
	(VRAM)

	B ,C
	Number of bytes of transfer data

Register save:	X,Y
"CVTIR" outputs data from main memory to VRAM. The counter is two bytes.
(2) VRAM Main memory
Subroutine calling sequence
Subroutine name:	RDVPM
	Address:
	144BH

	Function:
	Reads out VRAM data.

	Input
Registers
	Contents

	H,L
	Top address of read-out VRAM data

	D,E
	Top address of CPU data buffer

	B
	Number of bytes of read-out data

Register save:	B,C,X,Y
"RDVPM" transfers data from VRAM to the main memory The counter is one byte.
Subroutine name:	VCTIR
	Address:
	0E7DH

	Function:
	Reads data from VRAM.

	Input
Registers
	Contents

	H, L
	Top address of read-out VRAM data

	D, E
	Top address of CPU memory data buffer

	D, C
	Number of bytes transferred

Register save:	X,Y
"VCTIR" transfers data from VRAM to the main memory The counter is two bytes.
(3) VRAM -* VARM
Subroutine calling sequence
	Subroutine
	name: BLKMV

	Address:
	0B75H

	Function:
	Transfers data between VRAM

	
	addresses.

	Input
Registers
	Contents

	H,L
	Source address in VRAM

	D, E
	Destination address in VRAM

	B, C
	Number of bytes transferred

Register save:	X,Y
"BLKMV" is a routine to transfer data between VRAM locations. It uses a two-byte counter.
Subroutine name:	BLKMV2
	Address:
	0B81H

	Function:
	Transfers data between VRAM

	
	locations.

	Input
Registers
	Contents

	H,L
	Source address in VRAM

	D, E
	Destination address in VRAM

Register save:	X,Y
	Remarks:
	Number of transferred bytes:

	
	2 KB (fixed)

"BLKMV2" operates on 2 KB of data at a time and transfers VRAM tables.
(4) Others
Subroutine calling sequence
Subroutine name:	PADVRM
	Address:
	0E01H

	Function:
	Outputs the same code con

	
	tinuously to VRAM.

	Input
Registers
	Contents

	Acc
	Output code

	BC
	Number of bytes output

	H, L
	Destination top address in VRAM

Register save:	E,X,Y
 (
Subroutine calling sequence
)
 (
Subrouting calling sequence
)
 (
Subrouting calling sequence
)
"PADVRAM" fills an area specified by VRAM with the same code.
 (
2-
71
)
 (
2-
72
)
 (
2-
#
)
 (
2-21 Multiplication routine
)This system provides two multiplication routines, but does not consider overflow, etc.
Subroutine calling sequence
Subroutine name:	MLTAL
	Address:
	1441H

	Function:
	L register x Acc register

	
	(unsigned multiplication)

	Input
Registers
	Contents

	L
	n (0 ^ n ^ 255)

	Acc
	m (0 ^ n ^ 255)

	Output
Registers
	Contents

	H, L
	n x m

Register save:	B,C,D,E,X,Y
Subroutine calling sequence
Subroutine name:	MULTHD
	Address:
	142CH

	Function:
	HL register x DE register (unsigned multiplication)

	Input
Registers
	Contents

	H, L
	n (0 ^ n < 65535)

	D, E
	m (0 £ n 65535)

	Output
Registers
	Contents

	H, L
	n x m

Register save:	B,C,X,Y

[bookmark: bookmark41]2-22 Other information
Routines not described in previous sections are detailed below.

Subroutine calling sequence

 (
2-
76
)
 (
2-
75
)

Subroutine name: Address:
Function: Register save:

VDPINT
OEOBH
Initializes VDP. X,Y

Sets both page 0 and page 1 or VRAM to the GI mode for initialization.
Subroutine calling sequence
Subroutine name:	EXTBL
 (
Address: Function:
Input
Registers
Acc
H ,L
Register save: Remarks:
Jump table top address (H,L)
)1076H
Table jump
Contents
Table offset
Jump table top address
:	B,C,E,X,Y
 (
This routine executes a table
)Jump table
	1st processing routine
	L

	top address
	H

	2nd processing routine
	L

	top address
	H

	
	L

	
	H

	nth processing routine
	L

	top address
	H

	
	L

	
	H

When jumping to the nth processing, set n to Acc
jump,

The following processing determines whether a cursor out has occurred.
Subroutine calling sequence
Subroutine name:	CCUROT
	Address:
	1481H

	Function:
	Checks for a cursor out.

	Input
Registers
	Contents

	D
	Position X

	E
	Position Y

Other conditions:	Cy=l Cursor out
(outside of viewpoint)

[bookmark: bookmark42]Chapter 3 Keyboard Handling
CONTENTS
1. Ten-shift key matrix 	 3-1
2. Auto-repeat function 	 3-10
3. Cursor and cursor blinking 	 3-10
4. Reset/halt keys 	 3-11
5. Type ahead mode 	 3-12
6. Entry (audio) confirmation 	 3-13
7. Keyboard time-out 	 3-13
8. Function key setting 	 3-13
9. Joypad and attack switch 	 3-16
 (
3
)
 (
3
)
3- [bookmark: bookmark43]1 Ten-shift key matrix
This computer has a full keyboard with 54 keys. The keyboard can enter more than 54 characters, however, by using multifunction keys. Characters are classified into several groups, each group of keys sharing a general function. In this manual, this general function will be called a "mode."
There are three basic modes:
1. Letter mode (with lowercase characters
the standard entry)
2. Capital mode (with uppercase characters
the standard entry)
3. Graphics mode (input pseudo-graphics)
Modes are set to make a key perform a different function. The "s" key is pressed, for example, to enter both a lowercase "s" and an uppercase "S." The difference is, of course, that the shift key is also pressed. The shift key is one of the "auxiliary" keys that are used to change the function of a key. There are three auxiliary keys:
1. Shift key (SHIFT)
Two keys: one on the right and one on the left
2. Control key (CTRL)
One key
3. Function key (FUNC)
One key
The characters and keys are in a one-to-one correspondence in any given mode.
The auxiliary keys have no meaning when they are used alone. They are meaningful only when they are pressed at the same time as a character key.
The shift keys assign the alternate characters allocated to the keys in each mode. Control codes assigned to keys do not change with the mode.
When a character control code is entered by pressing a key in the letter mode and the control key, the D6 bit is set to 0 (zero). But, some of the keys (such as the cursor move key) are handled as exceptions.
Character-strings, not characters, are entered using the function key. The character strings can be defined freely by the user. The character strings can be used for words reserved in the language utility and for the user optional definition key. A maximum of 26 character strings is available. One function can be set to equal a 255- character string.
This computer interprets the keyboard shift in combination with the following modes and auxiliary keys.
	1.
	Letter
	mode
	Numbers
	and
	lowercase
	letters

	2.
	Letter
	shift
	mode Symbols
	and
	uppercase
	letters

	3.
	Capital
	. mode
	Numbers
	and
	uppercase
	letters

 (
4.
Capital shift mode
Symbols and lowercase letters
)

 (
3-
1
)
 (
3-
2
)
 (
3-
3
)
Pseudo-graphics (80H to 9FH)
 (
Graphics mode
Graphics shift mode
Control
Control shift
Function
10. Function shift
)Pseudo-graphics (EOH to FFH)
Enters a control code
Handles a control code as a character
Displays and executes a pre-set character string
If there is a control code
in the saved character string,
does not execute the code but
displays it as a character.
Each key has one number, which is called the key address. The address is expressed as follows.
Address = |(input port) AND FH | * 8 + (the bit
allocated to the key) +1
Addresses allocated to each key, keyboard matrixes and the correspondence between matrixes and characters in each mode are listed below. For the keyboard arrangement and standard graphics fonts, see the Attachement.
Correspondence between keys and addresses
	9
	10
	11
	12
	13
	14
	15
	16
	41
	42
	43
	44
	48

	0
	17
	18
	19
	20
	21
	22
	23
	24
	49
	50
	51
	52
	8

	

	0
	25
	26
	27
	28
	29
	30
	31
	32
	53
	54
	55
	56
	7

	33
	34
	35
	36
	37
	38
	39
	40
	45
	46
	47
	0

Address 0 means no input.

 (
D7 D6 D5 D4 D3 D2 D1 DO
)
 (
D7 D6 D5 D4 D3 D2 D1 DO
)

 (
3-
4
)
 (
3-
#
)
 (
3-
5
)
 (
Address
) (
30H 31H 32H 33H 34H 35H 36H 3 7H
) (
D7
8
1
1
16
24
32
) (
7-0
) (
15
) (
23 -
) (
- 31
) (
0-0
) (
- 0
) (
14
) (
- 13
) (
12
 -
11
) (
10
) (
22
 -
21
 -
20
) (
- 19
) (
18
) (
- 17
) (
- 30
) (
29 - 28
) (
27
) (
26-25
) (
I
) (
40 - 39 - 38
) (
37
) (
36 -
) (
35-34
) (
- 33
) (
48
) (
47
) (
46 - 45
) (
44
) (
43 -
) (
42 - 41
) (
56 — 55 — 54 — 53 — 52 —
) (
51-50
) (
IZJZZL
) (
49
)

 (
shiftMSift
right
1
 left
) (
CTRL
1
g
a
) (
FUNC
) (
-i*ivMTl-m-u
)

 (
Letter mode
) (
D7 D6 D5 D4 D3 D2 D1 DO
)
 (
Graphics mode
) (
D7 D6 D5 D4 D3 D2 D1 DO
)
 (
Letter shift mode
) (
D7 D6 D5 D4 D3 D2 D1 DO
)

 (
3-
6
)
 (
3-
8
)
 (
3-
7
)

36H
37H
Uppercase letters in the capital mode,

' XO ' XI ' X2 ' X3 ' X4 ' X5 ' X6 ' X7
 (
CR -
nr
-4
-x-
SHIFT
right
SHIFT _ left
|
- FUNC -
|
- CTRL
rr
(-
...
.1
 ,
v
L—
- &L -
L
~r
J
J
 r
- $
!
p
- # -
nr
——
L- »
1
!
i -
1
1
- u -
i
- Y -
- T -
- R -
1
- E -
...
1
.
- W -
1
- Q
l
t
j
1
K -
1
"Lj-T
1
1
i
H
 r
- G -
1
r
- D -
1
L
- s -
nr
1
- A
1
.,1
< "
L_
- M -
n^
- N - n
-
"
—-L—
- B -
■f
.1
- C -
- x -
v
...
.1

..
- z
1
1
1
-L.
..L
- ? -
.1.
- > -
— —
n^
nr
1
X,
1
1
-
)
}
-
L
T“
J
L
- * -
- -b -
.1
- L -
V
I
- {
-
1
Sr
J-
- P -
1
- 0 V
!
1
-
Yj-
i
1
)Lowercase letters in the capital mode.

 (
30H
31H
32H
33H
34H
35H
36H
37H
) (
CR
) (
- SP -
) (
-m-
) (
93 -
1
 92
) (
97 - 96
) (
9B
) (
-91-90
) (
- 95 -
) (
9fl
) (
84 - 81
) (
9E
x
) (
r
9F
) (
|SHIFT|_
right
) (
94j—J^88j-
) (
99 - 98
) (
h_
) (
80
) (
Vf
j L.
) (
9D
) (
r
) (
— FUNC -
J
- CTRL
L
~r
J
L
- 2 - I
1,
-1
nr
, l .
- 86 - J
-l— - 8C
1.
- 8B -
I
1
- 8fl
L
~r
J
. 1 _
-j 85 -
1
. l..... - 8F
1
- 0 -
'
Lf
.
L_
-j 83 -
-i
-1 82
5
) (
SHIFT!
left
) (
87 - 8D
) (
8E
) (
- 9C
)

	30H 	
	CR - 1
	- SP -
	
	-x-
	Jshift!
jrigiit]
	SHIFT _
left
1
	- FUNC - 1
	- CTEL

	31H
	. -L (-
	
	- & -
{~TJ
	- % - v
	- $ - l~TJ
	- it - L~rJ
	1.
■n
	- !

	32H
	1
F3 -
	1.
- F2 -
	.■JL. - FI -
	. L
- FO -
	1
- E7 -
ltj
	i
- ED -
	_i
- E6 - 1
	- EC
nr

	33H 	
	1
F7 -
hr
	rh
t!ir
	- F5 -
1
	F4 -
	1
- E8 -
hr
	1
- E9 - |
	1.
- EB -
hr
	1
- EA
1

	34H
	< -
	- FB -
hr
	- FA -
V
	- F9 -
	- F8 -
hr
	- EE -
hh
	- E5 j- 1
	I	
- EF

	35H
	i
i
L~rJ
	- E4 -
	1
- El -
	- > -
{~TJ
	
	1
	1
	-) S-

	36H
	i
FE - 	1	
	-j FF -
	JL.
	1
- EO -
—r—*
	- FD -
	1
- FC - 	1	
	J.
- E3 -
	■1- - E2

	37H 	
	
	5-
	-y-
	-5-
	-y-
	-y-
	-5-
	

 (
Graphics shift mode
) (
D7 D6 D5 D4 D3 D2 D1 DO
)
 (
3-2 Auto-repeat function
)
 (
3-4 Reset/halt keys
)

 (
3-
9
)
 (
3-
10
)
 (
3-
11
)
The auto-repeat function allows repeated input of the same character simply by pressing the key longer than normally.
There are two auto-repeat counters: one for the autorepeat start time and one for the auto-repeat interval. The auto-repeat start time is counted after the start of key input until auto-repeat starts. The auto-repeat interval is counted from the auto-repeat start.
The default value is 0.5 seconds for the auto-repeat monitor time and 66 milliseconds for the auto-repeat interval.
3- [bookmark: bookmark48]3 Cursor and cursor blinking
3-3-1 Cursor pattern
The cursor is displayed at the position corresponding to the cursor position in the screen information table, and it blinks at a fixed rate.
Patterns displayed on the cursor position are determined as listed below for each mode.
	
	Letter mode
	Capital mode
	Graphics mode

	Over-writing
mode
	
	
	

	
	
	
	“i
	
	
	©
	
	
	©
	

	
	
	
	

	Insertion
mode
	
	
	

	
	
	
	
	
	
	©
	
	
	gj
	

	
	
	
	

The RESET key is effective only when the shift key is pressed. The HALT key is effective only when the control key is pressed.
Users can handle the processing as desired when the RESET and HALT keys are pressed. For this purpose, a head address must be allocated for system processing. Usually pressing these keys causes the system to return to the command input status.
Stack status at RESET and HALT key interrupt.
When the RESET or HALT key is pressed, and control returns to the system, the stack is set as below.
Hence, the user must operate to adjust the stack level.
When control passes to the RESET and HALT key processing, data saved in each register becomes meaningless.
3- [bookmark: bookmark49] (
Register
L
ii
H
Register
E
H
D
Register
C
H
B
PSW
(Acc)
The return address used when the RESET or HALT key is pressed.
) (
The register group reserved at a CTC interrupt.
)5 Type ahead mode
In the type ahead mode, characters in the keyboard buffer are input in parallel with the instructions generated by the interrupt processing except when accepting input from the keyboard.
The keyboard buffer size is 64 bytes in a ring buffer format.
 (
Stack pointer
)

The KINFLG bit 0 must be changed when the user sets or releases the type adhead mode.
 (
3-
12
)
 (
3-
16
)
 (
3-
17
)
[bookmark: bookmark50]3-6 Entry (audio) confirmation
Key entry is confirmed by an audible click sounding at the same time as the key input.
The click frequency and length can be changed by the user. Turning the click switch (KINFLG bit 7) OFF can stop the click.
[bookmark: bookmark51]3-7 Keyboard time-out
If no input is made within a set wait time after the previous input, a time-out error occurs. The key input time is set by the key input wait in the keyboard information table and standard key input time.
[bookmark: bookmark52]3-8 Function key setting
The procedure for setting the function key is as follows.
1. Set a function key control flag of the function key control table in the system table.
76543210
	 Number of function keys (max. of 26)
	 Function key data format
The data format is:
 (
Counter
) (
Character string
)0:

Put the counter in the first byte of the character string. Then, the number of character strings indicated by the counter follows.
 (
Character string
) (
Termi
nator
)Is

Put the terminator (null character or CR) at the end of the character string. But the terminator does not ignore format 0.
2. Save the head address of the function key information table.
3. The function key information table uses a saved function key x 2 byte table for specified character string pointers in increments of two bytes.
4. Save data in the format specified by the function key control flag at the position specified by the pointer.

[bookmark: bookmark53]3-9 Joypad and attack switches
The joypad has four direction switches and two attack switches.
The four direction switches provide data for any of eight directions or a neutral state.
There are two attack switches, which can be expanded to four switches.
3-9-1 Joypad support
If system interrupt support is desired for the joypad direction switches, set the joypad switch of the event control flag to 1. If this switch is set to 0, system support cannot be provided, but if the user calls the subroutine (JOYSP) for joypad support, the joypad direction number can be read.
3-9-2 Attack switches
Since the attack switch is not supported by the system, the user must read data directly from the I/O port.
Port name: KEYMD1
Attack switch data:

 (
MSB
LSB
V
v
/ \
v
)
Right
Left
)Out of the 8 data bits, bits 0 and 1 are used for the left attack switch and bits 4 and 5 for the right attack switch.
Bits 2, 3, 6, and 7 are not used.
Note:	The attack switch utilizes the keyboard numerics
for the same addresses as the keys, and the attack switch is read during the keyboard scanning. Hence, pressing the attack switch during the keyboard scanning causes numerics to be input.

 (
Subroutine calling sequence
)
 (
Subroutine calling sequence
)

 (
3-
28
)
 (
3-
27
)
 (
Subroutine name
) (
WTKDTC
) (
Address:
) (
0756H
) (
Function:
) (
Blinks the cursor and waits
) (
for key input.
) (
Output
Registers
Contents
) (
Acc
) (
Input character code
) (
B
) (
Auxiliary key information
) (
Register save
) (
D,E,X,Y
) (
Other conditions:
Cy=l Time-out error
) (
This subroutine blinks the cursor and waits for data input into the keyboard buffer. When the time-out flag (down-counter end flag) becomes 1 before the data is input, it is regarded as a time-out and is handled as a time-out error. When an error occurs, stop the down-counter and delete the flag (reset it to 0).
)

 (
Subroutine name
) (
SCNKB
) (
Address
) (
0966H
) (
Function:
) (
Keyboard scan
) (
Output
Registers
Contents
) (
Acc
) (
Pressed key address
) (
B
) (
Auxiliary key information
) (
Register save:
) (
D,E,H,L,X,Y
) (
Other conditions:
Cy=l A key being pressed
is not found.
) (
This subroutine scans the keyboard and provides the address of the key being pressed. Auxiliary key information is output to register B. If a key is not pressed, a carrier is set and the key input is not waited for.
)

Subroutine name:	ACECH
Address:	0827H
Function:	One-character	input
 (
Input
Registers
Acc
) (
Output
Registers
Acc
B
)Contents
Echo back flag 0 : without echo-back 1:	with echo-back
Contents
Input character code Auxiliary key information
Register save:	E,X,Y
Other conditions:	Cy=l Time-out error
One-character input processing from the keyboard.
If the input is not provided within the time period determined by the keyboard input time of the keyboard information table, a time-out error occurs.
When an echo back flag is set, the interrupt characters are displayed on the screen.
When this processing is accessed, first the keyboard timer starts. If already during the operation, the counter under operation continues.

 (
Function:
)One-character input
Output
Registers	Contents
 (
Acc
) (
B
)Input character code
Auxiliary key information
 (
D,E,X,Y
) (
Subroutine name:
) (
ACECHI
) (
Address:
) (
0845H
)Register save:
Other conditions:	Cy=l Time-out error
This subroutine gets one character from the keyboard. Differences from ACECH are listed below.
. The keyboard timer is not started. (keeps the current status)
. Echo-back is not used.
. Only registers D, E and X, Y are saved.
Subroutine names	EDTLN
	Address:
	0668H

	Function:
	Edit input

	Input
Registers
	Contents

	B
	Max. number of input characters

	
	(Input buffer size)

	H ,L
	Input buffer head address

	Output
Registers
	Contents

	Acc
	Last input character code (Usually a terminator)

	B
	Max. number of input characters

	H,L
	Next address of the last input

	
	character

Register save:	X,Y
Other conditions:	Cy=l Time-out error
	
	(An error code is input

	
	into Acc.)

	
	Input data exceeded

	
	the buffer size.

This subroutine edits and inputs statements displayed on the screen.
Subroutine name:	EDTST
	Address:
	0689H

	Function:
	Edit and input

	Output
Registers
	Contents

	D
	Head position X of inputted statements

	E
	»i y "

	Register save:
	: X,Y

Other conditions:	Cy=l Time-out error
This is an internal subroutine of EDTLN, and it processes the portion between the edit start and the return input.
Subroutine name:	ACEST
	Address:
	066FH

	Function:
	Edit and input

	Input
Registers
	Contents

	B
	Max. number of input characters

	
	(input buffer size)

	D
	Input start position X

	E
	" Y

	H, L
	Input buffer head address

	Output
Registers
	Contents

	Acc
	Last input character code

	B
	Input buffer size

	
	- Number of input characters

	H ,L
	Last input character address + 1

Register save:	X,Y
Other conditions:	Cy=l The input data exceeded
the buffer size.
This is an internal subroutine of EDTLN, and it processes the portion to read statements input after the return.
EDTLN is processing in a combination of EDTST and ACEST. It is possible for the utility to use these two kinds of processing to arrange EDTLN.
Subroutine name:	CALKAD
	Address:
	097BH

	Function:
	Key address computation

	Input
Registers
	Contents

	Acc
	Input key data

	C
	I/O address

	Output
Registers
	Contents

	Acc
	Pressed key address

Register save:	B,C,D,E,H,L,X,Y
Other conditions:	Cy=l When the key is not
pressed.
This subroutine computes the key address for a pressed key. The address expression is as follows.
Address = | (I/O port No.) AND 7 | * 8 + (the bit
allocated to the key being pressed) + 1
Subroutine name:	DECTR
	Address:
	090BH

	Function:
	Decode in control mode

	Input
Registers
	Contents

	Acc
	Key address

	B
	Auxiliary key information

	Output
Registers
	Contents

	Acc
	Decoding result

	B
	Auxiliary key information

Register save:	B,C,X,Y
Other conditions:	Cy=l No key is allocated.
This subroutine gets characters allocated to keys in the control mode.
Subroutine name:	DECFN
	Address:
	0933H

	Function:
	Function key decoding

	Input
Registers
	Contents

	Acc
	Key address

	B
	Auxiliary key information

	Output
Registers
	Contents

	B
	Auxiliary key information

	H,L
	Head address of a character string

	
	allocated to the function key.

Register save:	X,Y
Other conditions:	Cy=l No key is allocated.
This subroutine gets the head address of a character string allocated to a key in the function mode.
Subroutine name:	DECAD
	Address:
	08DAH

	Function:
	Address decode

	Input
Registers
	Contents

	Acc
	Key address

	B
	Auxiliary key information

	Output
Registers
	Contents

	Acc
	Decoded result (pressed character)

	H,L
	In case of the function shift,

	
	this indicates a head address of

	
	an allocated character string.

Register save:	B,C,D,E,X,Y
Other conditions:	Cy=l No character is allocated
This subroutine gets the characters allocated to a pressed key from the key address and auxiliary key information.
Subroutine name:	CMPCUR
Address:	0784H
Function:	Comparison	of two coordinates
Input
 (
Contents
Coordinate 1
"
2
)Registers
H,L D, E
Register save:	B,C,D,E,H,L,X,Y
Remarks:	Cy=l Z = 0: Coordinate 1 < Cordina-
Cy=0 Z=1:
Cy=0 Z-l:	"	>
This subroutine interprets the contents of register pair (H,L) and the most-significant bytes of (D,E) as X and the least-significant bytes as Y, and compares them.
If the Y coordinates of coordinates 1 and 2 coincide, tl coordinate size depends on the coordinate X size.
 (
Subroutine calling sequence
)
 (
Subroutine calling sequence
)
 (
Subroutine calling sequence
)
Unless the Y coordinates of coordinates 1 and 2 coincide the coordinate size depends on the coordinate Y size without regard to coordinate X.
 (
3-
29
)
 (
3-
30
)
 (
3-
31
)

 (
(Ex)
) (
X
) (
1
°
) (
2
°
) (
Y
) (
1
>
2
)

	Subroutine
	name: STRTKT

	Address:
	0992H

	Function:
	Keyboard timer start.

Register save:	B,C,D,E,H,L,X,Y
Other conditions:	Cy=l Already started.
This subroutine starts the timer at keyboard input The key input wait time and the standard time are used to determine the time-out.
Subroutine calling sequence
	Subroutine
	name: ACELN

	Address:
	07A9H

	Function:
	One-line input

	
	(without edit function)

	Input
Registers
	Contents

	B
	Input buffer size

	H,L
	Input buffer head address

	Output
Registers
	Contents

	Acc
	Last-input character

	B
	Max. number of input characters

	
	- Number of input characters

	C
	Number of input characters

	H ,L
	Last-input character address + 1

Register save:	X,Y
Other conditions:	Cy=l Time-out error
The input data exceeded the input buffer size.
This subroutine provides line input processing (editing) with one-character deletion and line deletion only. The following characters can be used as terminators.
. Return (ODH)
. Return (17H)
. Counter control key (1CH 		 1FH)
. Home (OBH)
. Escape (1BH)
. Line feed (OAH)
The terminator is placed in Acc at the processing end time and is simultaneously saved in TERMAL of the key input information table also. Terminator echo-back takes place only for the return.

 (
Subroutine calling sequence
)
 (
Subroutine calling sequence
)
This processing is most efficient, not in getting input information from the screen, but in accepting only information entered directly from the keyboard.
 (
3-
32
)
 (
3-
36
)
 (
3-
37
)
	Subroutine
	name: PAD

	Address:
	0861H

	Function:
	Padding

	Input
Registers
	Contents

	Acc
	Padded data

	H, L
	Padding start address

	B,C
	Number of bytes padded

	Output
Registers
	Contents

	H, L
	Last padded address +1

Register save:	Acc,X,Y
This subroutine pads the specified memory space with the codes specified in Acc.
Subroutine calling sequence
	Subroutine
	name: NULPAD

	Address:
	086 OH

	Function:
	Null clear

	Input
Registers
	Contents

	H,L
	Clear start address

	B,C
	Number of bytes cleared

	Output
Registers
	Contents

	H,L
	Clear end address + 1

Register save:	X,Y
This subroutine fills the main memory with null characters

Subroutine name:	GTKDT
Address:	08ACH
Function:	Gets one	character from the
keyboard buffer.
Output
Registers	Contents
Acc	Non-numeric data
 (
B
)Auxiliary key information (control code)
Register save:	X,Y
Other conditions:	Cy=l No data exists.
This subroutine gets one character of information from the keyboard buffer. In case of characters other than the control code, 00H is put on the auxiliary key information.
 (
Function:
) (
Register save
) (
Subroutine name
) (
CLKBF
) (
Address
) (
077BH
)Cancells data saved in the keyboard buffer.
PSW,B,C,D,E,H,L,X,Y
This subroutine effectively "sets" all information in the keyboard buffer to null characters. Actually, the data is not erased; a get pointer value is assigned to the put pointer. This does, however, have the same effect and the range of effective data becomes unknown. When the keyboard "pre-pressing" assignment is released, this subroutine must be executed before any information from the keyboard buffer can be accepted. Hence, the function key handles only one head character, and the effectiveness is lost.
Subroutine name:	CHKYM
	Address:
	073FH

	Function:
	Checks the key input mode

	
	change.

	Input
Registers
	Contents

	Acc
	Control code

	
	01: Letter mode

	
	02: Capital mode

	
	03: Graphics mode

	B
	Auxiliary key information

Register save:	D,E,X,Y
Other conditions:	Cy=l This is not a key
input change.
This subroutine uses the auxiliary key information and input character data to detect a change in key input
	mode assignment, changes mode.
	Upon detection, the subroutine

Changing the input mode requires the MSB of the auxiliary key to be 1.
Subroutine name:	STDMl
	Address:
	04FFH

	Function:
	Sets display mode 1

	Input
Registers
	Contents

	B
	Auxiliary key information

	Remarks:
	Z = 0 	DMDL = 1

	
	Z = 1 	DMDl = 0

The display mode 1 is a flag to select execution of the control code (flag is 0) or the display of it (flag is 1). Refer to the section of the Display Handler for DSPCH.

[bookmark: bookmark54]Chapter 4 Sprite Handler
CONTENTS
1. Sprite pattern setting 	 4-1
2. Resolution and magnification	of sprites 	 4-4
3. Contents of the sprite attribute table 	 4-7
4. Sprite position (physical position
and logical position) 	 4-10
5. Sprite move 	 4-15
6. Sprite deletion 	 4-18

7. Sprite information from VDP	 4-20

 (
4
)
 (
4
)
[bookmark: bookmark55]Sprite pattern setting
 (
4-1
4-1-
)1 Sprite characteristics
The sprite is an graphics pattern that is hardware-
supported by VDP.
A sprite has three basic characteristics:
(1) It can freely set coordinates X and Y without regard to the character plane.
(2) It has a priority hierarchy on display of 32 sprites. When a lower priority sprite contends with a higher priority sprite at the same location the lower priority sprite is deleted automatically
(3) It enables the three-dimensional graphics to be generated easily.
Thus, the sprite feature is very convenient. To display a sprite, the sprite pattern must be set in VRAM.
 (
4-
#
)
 (
4-
1
)

 (
4-1-2 Sprite pattern setting
)
 (
Subroutine calling sequence
)
When the above sprite pattern (A) is set as the sprit pattern #N, write data into the position indicated by sprite pattern table #N in VRAM. This is the same procedure as for the character set. Up to 256 def- ferent sprite patterns can be set (#0 to #255) .
 (
4-
2
)
 (
4-
4
)
 (
4-
3
)
Subroutine name:	STSCHR
	Address:
	OE58H

	Function:
	Sets the sprite pattern.

	Input
Registers
	Contents

	B
	Number of patterns to be set.

	C
	First set code no.

	H,L
	Data head address

Register save:	X,Y
Other conditions:	Cy=l The parameter is
inadequate.
This subroutine sets the sprite data from the sprite pattern table head in increments of eight bytes by sprite code numbers set in the C registers during this processing.
4- [bookmark: bookmark56]2 Resolution and magnification of sprites
Sprites come in two sizes: vertical 8 dots x horizontal 8 dots and vertical 16 dots x horizontal 16 dots.
Definition of the 8 x 8-dot sprite was detailed in Section 4-1. This section describes how to define a 16 x 16-dot sprite.

The 16 x 16-dot sprite requires 32 bytes for one pattern. When setting the 32 bytes, divide the pattern into four parts and set the two left blocks then the two right blocks as shown above. Thus, if this procedure is
applied to STSCHR on the preceding page, four smaller patterns must be defined to set one complete pattern.

 (
Sprite magnification
)

In this case, it should be noted that giving any code of N, (N + 1), (N + 2) , and (N + 3) to the attribute table causes the same display as given N.

 (
4-
8
)
 (
4-
9
)
A sprite can be of either of two sizes: one-time magnification (one dot is displayed as one dot), and two-times magnification (one dot is displayed as four dots).
The 8x8 dot-pattern is displayed as 8 dots x 8 dots on a one-time magnification. If the pattern is magnified by two times, it is displayed as 16 dots x 16 dots, but the resolution is not improved. Changing the pattern size does not change the resolution.
The sprite resolution and magnification ratio must be applied to all sprites and, therefore, cannot be specified for single sprites.
Subroutine calling sequence
Subroutine name:	MAGFY
Address:	045CH
 (
Magnifies the sprite.
) (
Contents
)Function:
Input
Register
Acc
Kinds of magnification
	
	Resolution
	Mag. ratio

	0
	8x8
	X 1

	1
	8x8
	X 1

	2
	16 x 16
	x 2

	3
	16 x 16
	x 2

This subroutine determines the resolution and size of the sprite.
4- [bookmark: bookmark57]3 Contents of the sprite attribute table
To display the sprite on the screen, the sprite position, color, code, etc. must be set. They are stared in the sprite attribute table in VRAM.
	Vertical
position
	(Y)

	Horizontal position (X)

	Code no.

	EC
	0 0 0
	Color

The sprite attribute table consists of four bytes per sprite and is set in the following order: vertical position, horizontal position, code number, and color.
EC is the "early clock" bit and is a flag for shifting a sprite to the left by 32 dots.
The sprite attribute table consists of four bytes per sprite, (128 bytes for the maximum 32 sprites). Positions of the sprite attribute table correspond to the sprite numbers. The sprite numbers coincide with the sprite display priority. 0 is the highest priority.
Subroutine calling sequence
Subroutine name 2	STSCOD
	Address:
	0454H

	Function 2
	Sets the sprite code.

	Input
Registers
	Contents

	Acc
	Sprite no.

	C
	Graphics code no.

Resister save:	B,C,D,E,X,Y
 (
4-3-1 Sprite code setting
)

 (
Subroutine calling sequence
)
This subroutine is the graphics code handling routine for sprites. When the sprite magnification is two,by setting the graphics code for the upper left corner in register C, the remaining three patterns are set in the next three locations.
 (
4-
10
)
 (
4-
12
)
 (
4-
11
)
Subroutine name:	STSCOL
	Address:
	0445H

	Function:
	Sets the sprite color.

	Input
Registers
	Contents

	Acc
	Sprite no.

	B
	Color code

Register save:	B,C,D,E,X,Y
This subroutine sets the color of a sprite. Only the least-significant four bits are effective for the color code.
4- [bookmark: bookmark58]4 Sprite position (physical position and logical position)
The sprite position is indicated by a dot position on the screen with the upper left corner of the sprite taken as the origin.
— 48 (DOH) x ->	255

Dots on the display screen are arranged as 192 vertical (Y) dots and 256 horizontal (X) dots. The screen between Y=192 (COH) and Y=255 (FFH) cannot be seen. Exceeding 255 causes a sprite deleted downwards to appear.
Setting EC (early clock) at position X shifts the position to the left by 32 dots; the position can be hidden from the screen.
Physical position and logical position
This computer handles sprites with a logical binary position (with a two-byte code for software manipulation), computes the physical position (dot position on the screen), and outputs the results to the sprite attribute table.
Users can move the sprite without considering the early clock or position overflow.
Subroutine calling sequence
Subroutine name:	MVSPA
	Address:
	03CEH

	Function:
	Changes the sprite position.

	Input
Registers
	Contents

	Acc
	Sprite no.

	D,E
	Position (logical) Y

	H ,L
	" X

	Output
Registers
	Contents

	E
	Position (physical) Y

	D
	" X

	B
	Early clock bit (MSB)

Register save:	H,L,X,Y
Other conditions:	Cy=l The sprite disappeared

 (
Subroutine calling sequence
)
 (
Subroutine calling sequence
)
from the screen. The sprite position exceeded the support range.
 (
4-
13
)
 (
4-
14
)
 (
4-
15
)
Subroutine name:	GTSPOS
	Address:
	042BH

	Function:
	Gets the current sprite

	
	position.

	Input
Register
	Contents

	Acc
	Sprite no.

	Output
Registers
	Contents

	B
	Sprite color code

	C
	" graphics code

	D,E
	Current position (logical) Y

	H,L
	" X

Register save:	X,Y
Other conditions:	Cy=l The sprite is out of
	
	the support range.

	Remarks:
	Even if the sprite position

is out of the support range,

	
	the color code and graphic

	
	code are given.

This subroutine gets all sprite attributes.

Subroutine name:	GTSPLC
	Address:
	03EEH

	Function:
	Gets the logical sprite position.

	Input
Registers
	Contents

	B
	Early clock bit (MSB)

	C
	Physical position X

	E
	" Y

	Output
Registers
	Contents

	D, E
	Logical position Y

	H ,L
	" X

Register save:	B,C,X,Y
Other condition:	Cy=l The sprite is out of
the support range.
This subroutine provides the physical sprite position and computes the logical position.
Subroutine name:	GTSPPC
	Address:
	0377H

	Function:
	Gets the physical sprite

	
	position.

	Input
Registers
	Contents

	D, E
	Logical position Y

	H ,L
	" X

	Output
Registers
	Contents

	D
	Physical position X

	E
	" . Y

	B
	Early clock bit (MSB)

Register save:	X,Y
Other conditions:	Cy=l The sprite is out of
	
	the support range.
The sprite disappeared from the screen.

 (
Subroutine calling sequence
)
 (
Subroutine calling sequence
)
 (
4-5 Sprite move
)
This subroutine gives the logical sprite position and computes the physical position.
 (
4-
16
)
 (
4-
18
)
 (
4-
17
)
The sprite is moved by rewriting the sprite position.
Subroutine calling sequence
Subroutine name:	MVSPR
	Address:
	040BH

	Function:
	Relative move of the sprite

	Input
Registers
	Contents

	Acc
	Sprite no.

	B
	Moving vector (X direction)

	C
	" (Y direction)

	Output
Registers
	Contents

	D ,E
	Position after the move Y

	H,L
	" X

Register save:	X,Y
Other conditions:	Cy=l The sprite disappeared
from the screen.
This subroutine gives the moving vector and moves the sprite. The moving vector is indicated in dot increment. A binary number with a one-byte code is used for the vector.
Subroutine name:	ADDVCT
	Address:
	041BH

	Function:
	Moving vector addition

	Input
Registers
	Contents

	H,L
	Vector to be added X

	D,E
	" Y

	B
	Vector to add X

	C
	" Y

	Output
Registers
	Contents

	H,L
	Added result X

	D ,E
	" Y

Register save:	Acc,X,Y
This subroutine adds the moving vector of the sprite The "vector to be added" of DE and HL indicates the sprite move volume in dot increments.

 (
4-6 Sprite deletion
)
 (
Subroutine calling sequence
)

 (
4-
20
)
 (
4-
21
)
Subroutine name:	GTSTEP
	Address:
	049FH

	Function:
	Finds a moving vector

	
	near the target.

	Input
Registers
	Contents

	B
	Target position X

	C
	" Y

	H,L
	Current sprite position X

	D,E
	" Y

	Output
Registers
	Contents

	B
	Moving vector X

	C
	" Y

Register	save:	Acc,X,Y
Other conditions:	Cy=l	The	target	is too	far
away (the distance to the	target	should	be
within 255	dots).
The	moving	vector
reached the target.
This subroutine finds a moving vector for the sprite near the target. The size of the main direction (whichever is longer - the X distance or the Y distance) of the moving vector is determined by the number of sprite move steps in the event information table.
It easy to advance the sprite to a specified position by using GTSTEP and MVSPR.
To delete the sprite, move the sprite to a position which is off the screen.
Subroutine calling sequence
Subroutine name:	ERSSPR
	Address:
	03CCH

	Function:
	Deletes the sprite.

	Input
Register
	Contents

	Acc
	Sprite no.

Register save:	X,Y
This subroutine moves the sprite to a fixed deletion position. The sprite position runs out of the system support range.
Subroutine calling sequence
Subroutine name:	DELSPR
	Address:
	03C5H

	Function:
	Deletes the sprite.

	Input
Register
	Contents

	Acc
	Sprite no.

Register save:	B,C,D,E,X,Y
This subroutine gives DOH to the sprite position Y.
As a result, positions with a lower priority than the specified sprite cannot be displayed. DOH is a hardware delete code.
	Subroutine name 2
	ERSPRA

	Address:
	1387H

	Function:
	Deletes all sprites.

	Register save:
	X,Y

This subroutine deletes all the sprites. Subroutine calling sequence
	Subroutine name:
	CLRSS

	Address:
	13 7EH

	Function:
	Clears the screen and

	
	deletes the sprite.

	Register save:
	X,Y

This subroutine clears the screen and deletes the sprite.
The VDP provides the following sprite information to the CPU (the sprite status (SPSTUS) within the event control table):
LSB
76543210
	Fifth sprite no.
	 Sprite coincidence flag
	Fifth sprite flag
When more than four sprites are arranged on the same line due to a hardware restriction, VDP TSM9918A delets overlapping part of the fifth sprite. As illustrated below, the overlapping part beyond the fifth sprite on the lowest level disappears. The status is given by bits 6 and 0 ~ 4 of STATUS.

Bit 5 is the flag that shows sprite coincidence when set
 (
4-7 Sprite information from VDP
)

to 1. Since the contending sprite numbers are not given, the user must determine them himself.

 (
4-
22
)
 (
4-
#
)
 (
4-
23
)
[bookmark: bookmark59]Chapter 5 Event Handler
CONTENTS
1. What is an event? 	 5-1
2. Event control flag 	 5-5
3. System clock 	 5-6
4. Alarm processing 	 5-8
5. Time processing routine 	 5-9
6. Up counter 	 5-10
7. Down counter 	 5-12

8. User events 	 5-14

 (
5
)
 (
5
)
5- [bookmark: bookmark60]1 What is an event?
5-1-1 Definition and types of events
An "event" is the processing for an interrupt after a fixed interval in response to an interrupt of the CTC.
There are two types of events: a user event is initialized when the user program is run, and a system event is supported by the system from startup and is always running.
5-1-2 System events and user events
A user event can be determined by the user as required, but care should be exercised during execution of the user event. A user can define up to 40 user events.
A system event is supported by the system and can be utilized by the user according to the system procedure.
5-1-3 Types of system events
A system event can control the following functions:
1. System clock
2. Up counter and down counter
3. Interrupt of keyboard and joypad
4. Reset and halt key support
 (
5-
#
)
 (
5-
1
)

 (
Subroutine calling sequence
)
 (
Subroutine calling sequence
)

 (
5-
2
)
 (
5-
4
)
 (
5-
5
)
 (
Subroutine name
) (
CTCINT
) (
Address
) (
01C2H
)

 (
Function:
)Initializes CTC

 (
X,Y
)Register save
This sub-routine issues a control instruction to each CTC channel and initializes the operation. Initialization data for CTC channels #0 - 3 is as follows:
CTC initialization data
CTC initialization data
Channel #0
D7 ... INTEN (interrupt enable)
D6 ... Counter mode D5 ... X
D4 ... Rising trigger D3 ... X
D2 ... Presence of constant setting D1 ... Reset DO ... 1
Channel #1 D7 ... INTEN D6 ... Timer mode
D5 ... Prescaler X 256 D4 ... Rising trigger D3 ... Automatic initialization D2 ... Presence of constant setting
Dl ... Reset DO ... 1
Channel #2 D7 ... INTDS D6 ... Counter mode D5 ... X
D4 ... Rising trigger D3 ... X
D2 ... Presence of constant setting Dl ... Reset DO ... 1
Channel #2 Dl ... INTEN D6 ... Counter mode D5 ... X
D4 ... Rising trigger D3 ... X
D2 ... Presence of constant setting Dl ... Reset DO ... 1
	Channel No.
	Data (hexadecimal)

	#0
	C701

	#1
	A70E

	#2
	5717

	#3
	C701

For the details of set values, refer to the Z80 CTC Technical Manual.
CTC3SP
 (
Subroutine name: Address:
Function:
Register save:
)01DFH
Supports an interrupt of CTC channel 3.
•p
Support is provided by the system event support processing and event flag status, functions of which are listed below.
1. Sprite interrupt processing
2. System clock
3. Up counter
4. Down counter
5. Reset and halt key
6. Joypad direction switch
7. Stop of click and bell ringing
8. User event support
5- [bookmark: bookmark62]2 Event control flag
 (
76543210
)The event control flag is used to set the control status of system events and user events.
 (
(1
(1
(1
(1
(1
Cl
(1
(1
) (
ON)
ON)
ON)
ON)
ON)
ON)
ON)
ON)
)Synchronous sprite display System clock switch Up counter switch Down counter switch Joystick switch Keyboard switch User event switch Down counter end flag
5- [bookmark: bookmark63]3 System Clock
This computer has its own "clock". The system clock is set to 00:00:00 when power is turned on. The system clock is accurate to about 0.1%.
This clock performs two functions: timed interrupt every hour and alarm interrupt.
Subroutine calling sequence
Subroutine name:	STSCLK
	Address:
	02CFH

	Function:
	Sets time of the system clock

	Input
Registers
	Contents

	Acc
	Hour data

	H
	Minute data

	L
	Second data

Register save:	Acc,B,C,D,E,H,L,X,Y
Subroutine calling sequence
Subroutine name:	GTSCLK
	Address:
	02DBH

	Function:
	Reads time from the system

	
	clock

	Output
Registers
	Contents

	Acc
	Hour data

	H
	Minute data

	L
	Second data

Register save:	B,C,D,E,X,Y

the system clock time. The alarm is set directly as shown below:
. ALMTMM ... Alarm time (minute)
} One byte each
. ALMTMM ...	"	(hour)

 (
5-4 Alarm processing
)
 (
This subroutine is run to set the time and to read out
)
Note that no interrupt is allowed while these two bytes are set.
 (
5-
6
)
 (
5-
8
)
 (
5-
7
)
Alarm processing is used to initialize an interrupt at a preset time.
To set the alarm, store the alarm time at ALMTM and ALMTH in the event control table and store the head address of the alarm routine at ALMPRC.
Alarm time (minute)
Alarm time (hour)
Head address of alarm routine
 (
5-5 Time processing routine
)
 (
5-6 Up counter
)
 (
Subroutine calling sequence
)
The time processing routine performs initialization at 00:00 each hour. To execute time processing, store the head address of the routine each hour at EVHPRC in the event control table.
 (
5-
9
)
 (
5-
10
)
 (
5-
11
)
The up counter is a two-byte counter with a minimum count cycle of 1/60 of a second. The count cycle is determined by UPCTBI (standard up counter time) in the event control table.
Count cycle = (standard up counter time) x 1/60 sec.
The default value of the count cycle is one second, and the maximum counter value is 65,535.
Subroutine calling sequence
Subroutine name:	STRTUC
Address:	02FBH
Function:	Initializes the	up	counter.
Input
Registers	Contents
Acc	Standard up counter time
Register save:	Acc,B,C,X,Y
Other conditions:	Cy=l The up counter	is
operating.
This subroutine starts the up counter from 0. If the up counter has already started, an error occurs, but this does not affect counters already operating.
The count cycle depends on the standard time set in (Acc).
	Subroutine name:
	STOPUC

	Address:
	0313H

	Function:
	Stops the up counter

	Register save:
	Acc,B,C,D,E,X,Y

This subroutine stops the up counter. If the counter has already been stopped, nothing happens. When the counter stops, a reset does not occur but the counter value and standard time are stopped at their current values.
Subroutine calling sequence
	Subroutine name:
	RSTRUC

	Address:
	030DH

	Function:
	Reinitializes the up counter

Register save:	Acc,B,C,D,E,X,Y
This subroutine restarts a stopped up counter from the current initial value and standard time, without change.
The down counter is a two-byte counter with a minimum count cycle of 1/60 second.
When the down counter value is 0, the down counter end flag (bit 7) (one of the event control flags) is turned ON (1), and the count is stopped. The count cycle is determined by the standard down counter time like that for the up counter:
Count cycle = (standard down counter time) x 1/60 sec The count cycle default value is one second.
This down counter is used as a keyboard timer to count the keyboard time-out. Be careful of this correspondence with the key input instruction when operating this counter.
Subroutine calling sequence
Subroutine name:	STRTDC
 (
Address:
Function:
Input
Registers
Acc
H, L
Register save
)0319H
Initializes the down counter Contents
Standard down counter time Initial value :	B,C,D,E,X,Y
 (
Other conditions:
)Cy=l The down counter is
operating.

registers (H) and (L) to 0 and sets the (Acc) value to the standard interval.
If the down counter is already operating, an error occurs, but other operating counters are not affected.
When the down counter starts, the down counter switch is ON (1) and the down counter end flag is set to 0.
Subroutine calling sequence
	Subroutine name:
	STOPDC

	Address:
	0340H

	Function:
	Stops the down counter

	Register save:
	Acc,B,C,D,E,H,L,X,Y

This subroutine stops the down counter. The counter value and standard time are stopped at their current values.
Subroutine calling sequence
	Subroutine name:
	RSTRDC

	Address:
	0336H

	Function:
	Restarts the down counter

	Register save:
	Acc,B,C,D,E,X,Y

	Other conditions:
	Cy=l The down counter has

	
	stopped

This subroutine restarts a stopped down counter. If the down counter end flag has already been set to 0, an error occurs. Otherwise the count restarts with the previous down counter values.
[bookmark: bookmark64]5-8 User events
A user event processes user-defined interrupts.
Control of a user event (start, stop, etc.) is managed by M5XEV.SR (the external monitor handler), but it is possible to use a user event without these routines.
1. User event save
To save a user event:
a. Set the maximum number of saved events in the event control table and the head address of the event information table, and turn on the user event switch of the event control flag.
b. Write the required six bytes of information for each event into a user-defined event information table.
2. User event start and stop
System support is available by setting the event
wait flag of the event information table to 0.
Setting it to 1 causes the event wait status, and
 (
5-7 Down counter
)

 (
This subroutine sets the down counter's count, in
)
the event stops.
 (
5-
12
)
 (
5-
14
)
 (
5-
13
)
 (
Number of saved events
(N)
Event
L
information table
head
address
H
) (
ui
<D
-P
>1
XI
) (
Event information table
) (
Support
delay
) (
F
) (
time
) (
Support
interval
) (
User event processing routine
) (
Event
processing head address
)

 (
Event control
table
)
 (
Contents of event information table (6 bytes)
)
 (
Subroutine calling sequence
)

 (
5-
15
)
 (
5-
18
)
 (
5-
17
)

 (
V
0
X
)User event processing
routine

F: Event wait flag (N): 40 or less

 (
s
F
upport delay time
Support
interval
i
Support
interval
w
Event
processing head address
L
H
)The support delay time is determined by a 15-bits counter.
It is the interval from the event save to the first support time.
The range of the support delay time is:
0 ^ T ^ 546 seconds

 (
T = (support delay time) x 1/60 sec
)L Event wait flag
0 = Support request
1 = Support wait
The support interval is measured in units of the CTC interrupt interval (1/60 second each).
The support interval (T) expression is:
T = (Support interval) x 1/60 sec
Event processing head address
When the user event processing time exceeds the interrupt interval, a run error may occur.
ETREIT
 (
Subroutine name: Address:
Function:
)0356H
Saves the event information table
 (
Input
Registers
Acc
H,L
)Contents
Number of saved events
Event information table head address
Register save:	Acc,B,C,D,E,X,Y
Other conditions:	Cy=l The number of saved
events is inadequate.
This subroutine sets the maximum number of saved events and the event information table head address and turns on the user event switch of the event control flag. If the number of saved events exceeds 40, an error occurs.

[bookmark: bookmark65]Chapter 6 Saving to and Loading from Cassette Storage
CONTENTS
1. Output format		 6-1
2. File format 	 6-2
3. Baud rate 	 6-5
4. Read/write of	file ID	block 	 6-6
5. Write/read of	block	data 	 6-7
6. Combined read/write		 6-14

7. Motc>r ON/OFF 	 6-17

 (
6
)
 (
6
)
o Recording system: Pulse-width modulation,
FSK method (0 + f, 1 -* 2f)
o Transfer rate:	1600 - 3200 (bps) optional
 (
6-1 Output format
)
 (
6-2 File format
)
 (
6-2 File format
)
o Waveform
 (
6-
1
)
 (
6-
2
)
 (
6-
#
)

 (
0
)

	
	

	2T
	T

o 1600 bps
	0:
	f = 1200
	Hz
	2T = 833
	ysec

	1:
	2f = 2400
	Hz
	T = 417
	ysec

 (
1. ID format
) (
0
1
2
3
4
5
6
7
8
9

11
12
13
) (
14
15
16
17
18
19

21
22
23
24
25
26
27
28
29
30
) (
File attribute
File name
(9 characters)
Loading head
L
address
H
Data (program)
L
Size
(in bytes)
H
Program start
L
address
H
Expansion
attribute
Blank area
(14 bytes)
) (
0
1
2
3
4
) (
5
6
) (
7
) (
0
Data
Loading only
Consecutive
data
) (
CPU memory
) (
1
) (
Execution format (machine language)
Auto-start
) (
Data file
) (
VDP memory
) (
Without pvr^n- With expansion sion attribute attribute
) (
Language
classification (2)
(
2
)
(
2
)
) (
Language
classification
=
0
1
Basic-I source
2
Falc
3
Basic-G
4
Basic-F
5
reserved
6
reserved
7
reserved
)

	1
u
	Tape
	File
	I
	Data
	
	I
	Data
	I
	Data
	I
B
G
	EOF

	lan
run
	mark
	ID
	B
G
	block
	
	B
G
	Block
	B
G
	block
	
	block

	r
	
	
	
	
	
	
	
	
	
	
	

 (
Blank run:
) (
i
rtf to O
to
g
*H rtf
U
 0
to
m r—1
o
-p
Data
•h
 m
A
 >i
U
-P
sn
0
Iden
tion
0
6
)

 (
File format
)
 (
File format
)

Non-recording period (about four seconds, due to a tape recorder with a head-out feature)
 (
Tape marks: File ID:
IBG:
)8,000 marks
Refer to preceding page
Non-consecutive data:
3,600 marks
Consecutive data: 512 marks
	Identification flags:
	'H'
	(48H) = File ID

	
	'D'
	(44H) = Data block

	
	'E '
	(45H) = EOF block

	
	i p i
	(46H) = File block

The EOF block is added only when non-consecutive data is output.
When one byte of data is sent, the data is sent as 10 bits by adding a start bit and a stop bit.
Start bit = 0 Stop bit = 1
 (
Byte format
)
 (
6-4 Read/write of file ID block
)

Example A5H
 (
6-
4
)
 (
6-
6
)
 (
6-
5
)

 (
, J
Start
bit
LSB
) (
MSB
) (
Stop bit
)

6- [bookmark: bookmark72]3 Baud rate
The baud rate is given by the following expression (at the save time).
Buad rate = {(d^ + n) 1 + 2 (dQ + 2n) 1} 7 3
	Where,
	dl
	= 35.36 x 10 6

	
	
	-6

	
	do
	= 49.71 x 10

	
	
	-6

	
	n
	= N x 8.929 x 10 D

	
	N
	= loop counter (STDLY value, in system table)

Initial value = 33
At the load time the baud rate is determined by the reader section (a section of more than 256 continuous bits).
Hence, the user need not specify the baud rate, but there is a limitation - with a lower limit of 1170 bps and an upper limit of about 4000 bps. The general tape recorder test value indicates a lower limit of 1170 bps and upper, limit of 2830 bps.
Subroutine calling sequence
Subroutine name:	RDFID
	Address:
	1598H

	Function:
	Reads the file ID block

	Input
Registers
	Contents

	H,L
	Head address of file ID input buffer

Register save:	X,Y
Other conditions:	Cy=l	The break key was pressed
Checksum error
Subroutine calling sequence
Subroutine name:	WTFID
	Address:
	15C3H

	Function:
	Writes out the file ID block

	Input
Registers
	Contents

	H,L
	Head address of file ID table

Register save:	X,Y
Other conditions:	Cy=l The break key was pressed
Subroutine calling sequence
Subroutine name:	WATBL
	Address:
	15EBH

	Function:
	Outputs block data (data block)

	Input
Registers
	Contents

	B
	Number of output bytes

	C
	IBG length

	H ,L
	Output buffer head address

	Output
Registers
	Contents

	H, L
	Data address last output + 1

Register save:	X,Y
Other conditions:	The break key was pressed.
This subroutine outputs IBG and output buffer data equivalent to the specified number of bytes.
 (
6-5 Read/write of block data
)
 (
Sobroutine calling sequence
)
 (
Sobroutine calling sequence
)
When bit 0 of the system table and ACMT table is 0 , the main memory is used as the output buffer, when 1, the VDP memory is used.
 (
6-
7
)
 (
6-
8
)
 (
6-
#
)
Subroutine name:	WATBLF
	Address:
	15E8H

	Function:
	Outputs a block of data

	
	(file block)

	Input
Registers
	Contents

	B
	Number of bytes output

	C
	IBG length

	H, L
	Output buffer head address

	Output
Registers
	Contents

	H ,L
	Data address last output + 1

Register save:	X,Y
Other conditions:	Cy=l The break key was pressed
This subroutine basically performs the same processing as subroutine WATBL except that data is output in a block.

*1 Outputs the IBG length (C register value) x 256 bytes' wave 1.
Ex. IBG length (number of pulses) = 8, at 1600 bps (1 = 2400 Hz)
IBG = 8 *256 = 2048 pulses — _2048 _	seconds
2400
 (
Recording format
)
 (
Subroutine calling sequence
)
 (
Subroutine calling sequence
)
*2 One-byte unsigned data without regard to carry (1 - 256 bytes).
 (
6-
9
)
 (
6-
10
)
 (
6-
11
)
 (
Address:
Function:
Input
Registers
H,L
Output
Registers
) (
1650H
Reads the data block
) (
Contents
) (
Input buffer head address
) (
Contents
)Subroutine name:	RATBL

 (
H,L
)Data address last input + 1
Register save:	X, Y
Other conditions:	Cy=l The break key was pressed
Checksum error
An illegal block was read The buffer was filled.
The EOF block was read.
This subroutine provides data blocks and outputs data to the input buffer (access is required during the IBG); it also selects the input buffer according to the system table and buffer select switch of the ACMT system flag.
Input buffer head address
Input data (1 - 256 bytes)
(H) and (L) value at normal end time (address)

Subroutine name:	RATBLF
	Address:
	164DH

	Function:
	Reads the file block

	Input
Registers
	Contents

	H,L
	Input buffer head address

	Outpur
Registers
	Contents

	H ,L
	Data address last input + 1

Register save:	X,Y
Other conditions:	0^=1 T^e kreak key was Pressed
	
	Checksum error

	
	An illegal block was read.

	
	The buffer was filled.

	
	The EOF block was read.

This subroutine outputs block data to the input buffer and various data to the file block.

 (
Subroutine calling sequence
)

 (
Subroutine calling sequence
)

 (
6-
12
)
 (
6-
14
)
 (
6-
15
)
 (
Subroutine name:
CPFNM
) (
Address:
Function:
Input
Registers
D, E
H,L
) (
1765H
Compares data
Contents
Data head address to be compared Data head address to be compared
) (
Register save: Other conditions: Remarks:
) (
B,C,X,Y
Cy=l No match
This processing is used by the next CPFNM.
) (
This subroutine compares data at the address in the DE register to data at the address in the HL register.
If the two pieces of data do not match, it sets a carrier. There is no limitation on the lengths of data that are compared. When a terminator (null character) is encountered, the data is assumed to be complete.
When a ? (3FH) is encountered, the comparison stops.
) (
(D)
(E)
) (
DATA 1
) (
♦
 (H)
(L)
DATA 2
) (
NULL
) (
NULL
)

Subroutine name:	RFIDC
	Address:
	1587H

	Function:
	Reads the file ID and compares

	
	the file names.

	Input
Registers
	Contents

	H,L
	Head address of file ID input buffer

	D,E
	Head address of file names to be

	
	searched.

Register save:	X,Y
Other conditions:	Cy=l The break key was pressed
Checksum error.
The file names do not match.
 (
6-6 Combined read/write
)Subroutine calling sequence
Subroutine name:	BSAVE
	Address:
	1529H

	Functions:
	Saves continuous data.

	Input
Registers
	Contents

	H,L
	Head address of file ID table

Register save:	X,Y
Other conditions:	Cy=l The break key was pressed
	Remarks:
	This subroutine is used by

	
	each processing described so

	
	far; it saves data according

	
	to information specified within the file.

Subroutine calling sequence
Subroutine name:	BSAVD
	Address:
	1563H

	Function:
	Divides data into blocks and

	
	saves it.

	Input
Registers
	Contents

	H, L
	Output data head address

	B ,C
	Number of bytes output

Resister save:	X,Y
Other conditions:	Cy=l The break key was pressed
	Remarks:
	Data is divided into 256-byte

	
	blocks and output.

Subroutine name:	BLODD
	Address:
	1579H

	Function:
	Loads one block of data

	Input
Registers
	Contents

	H,L
	Load buffer head address

	B,C
	Number of bytes input

Register save:	X,Y
Other conditions:	Cy=l The break key was pressed
	
	Checksum error

	
	The input buffer was

	
	filled.

	
	An illegal block was read

	
	The EOF block was read.

	Remarks:
	Data is divided into 256-byte

	
	blocks and input.

	Subroutine
	name: BLOAD

	Address:
	153BH

	Function:
	Reads continuous data.

	Input
Registers
	Contents

	Acc
	Loading mode:

	
	0 Loading

	
	1 Verify

	H,L
	Head address of file ID table

Register save:	• X,Y
Other conditions:	Cy=l The break key was pressed.
	
	Checksum error

	
	The file name is different

	
	An illegal block was read.

	Remarks:
	Data is loaded or verified

	
	according to information speci

	
	fied by the file ID.

 (
Subroutine calling sequence
)
 (
Subroutine calling sequence
)
 (
Subroutine calling sequence
)

 (
6-
16
)
 (
6-
#
)
 (
6-
17
)
 (
6-7 Motor ON/OFF
) (
Subroutine name:
MTRON
Address:
1776H
Function:
Turns on the ACMT remote switch.
Register save:
All registers
This subroutine turns
on the remote switch of the ACMT
deck.
) (
Subroutine calling sequence
Subroutine name:
MTROF
Address:
177EH
Function:
Turns off the ACMT remote switch.
Register save:
All registers
) (
This subroutine turns off the remote switch of the ACMT deck.
)

[bookmark: bookmark81]Chapter 7 Sound Generator Handler
CONTENTS
1. The	sound generator 	 7_1
2. SML	interpreter 	 7-7
3. Interrupt processing	by	SML* 	 7-18
4. How	to use the noise	generator 	 7-19

* SML Sord Music Language

 (
7
)
 (
7
)
7- [bookmark: bookmark82]1 The sound generator
 (
Contents of the sound generator register (SN76489AN)
)
 (
7-1-2 Sound volume format (1-byte output)
)
 (
Input
) (
Output
)The sound generator (SN76489AN) consists of three tone generators and one noise generator. The block diagram is given below.
 (
7-
1
)
 (
7-
4
)
 (
7-
3
)
7-1-1 Frequency set format (two-byte output)
 (
MSB
) (
7 6 5 4 3 2 1 0
\2
 Ri Ro
3 2 1 0
1
Reg.Adr.
Da ta
(Lower 4 bits)
) (
2
nd byte
MSB
LSB
7
6
5 4 3 2 1 0
9 8 7 6 5 4
0
X
Da ta
(Upper 6 bits)
) (
9
8
7
6
5
4
) (
3
2
10
) (
Reg.Adr.
R
2
R i
Ro
Register no.
0
0
0
Tone generator
1
0
1
0
ii
2
1
0
0
ii
3
Frequency
calculation
) (
Data n
(10-bit frequency divisor)
)1st byte
f[Hz] = N/32n f:	Output frequency
N:	Clock input frequency (3.579545 MHz)
n:	10-bit frequency division ratio

 (
7 6 5 4 3 2 1 0
1
R
2
 R i Ro
j
Delta j
) (
/ / / /
L
Rz
R i
Ro
f
1
0
0
1
Tone attenuation 1
0
1
1
"
2
1
0
1
" 3
1
l
1
Noise attenuation
) (
A
3
Az
At
—
Ao
1
 Attenuation . Volume
0
0
0
0
2
0
0
1
0
4
0
1
0
0
7
1
0
0
0
12.5
1
1
1
1
OFF
) (
Note:
) (
Changing the attenuation at every fixed time enables an envelope to be generated.
)

 (
7-1-3 Noise component format
)
 (
7-1-5 Sound scale data by sound generator
)

 (
7-
5
)
 (
7-
8
)
 (
7-
7
)
 (
FB
Noise mode
0
Synchronous
noise
1
White noise
)

7-1-4 Precaution for noise generator	operation
The output of the noise generator consists of white noise and synchronous noise. The noise frequency is controlled by two methods: fixed control (three kinds N/512, N/1024, and N/2048) and control under tone generator #3.
Items that can be controlled by tone generator #3
1. The	kind of noises.
2. The	noise volumes.
3. The	noise frequency	(2	bytes).
Only the above information is required (OUT instruction) .
Changing the noise volume and frequency can affect the output sound remarkably.
Ex:	Gunshot
Change the frequency register set value of the tone f3 to 0 - 15 and the noise attenuator to 0 - 15.

 (
Sound scale
Data
Octave 3 do
855
„ ,
" do
807
" re
762
„ # " re
719
" mi
679
" fa
641
II
JT
 #
" fa
605
" sol
571
II t #
" sol
539
" la
508
la
#
480
" si
453
) (
* Any tone in octave 4 can be the corresponding tone data
) (
found multiplying for octave 3 by 1/2.
)

[bookmark: bookmark85]7-2 SML interpreter
The SML interpreter interpretes eight commands to express the sound scale, duration, tempo, etc. It controls the SGC and timer.
This interpreter is executed by interrupt processing, with the interrupt cycle set by the tempo command.
. Actual case of interrupt

T^ = 1 msec
T = 	1	
2 Tempo counter
6 0
Tempo counter = —	tz x 1000
^	Tempo x 16
= Duration of a 1/64 note.
The SML handles following eight commands. Number of
Type	bytes	Function
	1-1
	1
	Specifies the interval and rest within the same octave.

	-2
	2
	Specifies duration.
	the
	above + sound

	II-l
	2
	Specifies number.
	the
	interval by a

	-2
	3
	Specifies duration.
	the
	above + sound

	III
	1
	Specifies the transposition,
	octave or

	IV
	1
	Specifies
	the
	sound volume.

	V
	1
	Specifies
	the
	envelope form.

	VI
	2
	Specifies
	the
	hold time no.

	VII
	2
	Specifies
	the
	sound duration

	VIII
	2
	Specifies
	the
	temp.

 (
Command system
)
 (
1-1 Specifies the interval and rest within the same
octave
)
 (
. Table of commands
) (
Specifies the interval and rest within the
same octave
)

 (
7-
9
)
 (
7-
10
)
 (
7-
11
)
	
	0
	0
	0
	
	.interval and rest'
	When
	bit 7
	= 1

	
	
	
	
	n
	
	2nd
	= sound
	duration

	7
	6
	5
	4
	3
	2 1 0
	
	data
	

	Directly specifies the interval by a number

	0
	0
	0
	
	When 2nd, bit 7=1 2nd: Interval data

	7 6 5 4 3 2 1 0 Specifies the octave or tran
	3rd: Sound duration data
sposition
When bit 7=1 n = transposition
i

	0 | 0
	1
	0
	n (octave)
	

	7 6 5 4 3 2 1 0 Specifies the sound volume
	

	0
	0
	1
	1
	n (sound volume)
	

	7 6 5 4 3 2 1 i Specifies the envelope form
	0
(no.)

	0
	1
	0
	0
	0 J n (envelope no.)

	7 6 5 4 3 2 1 0
Specifies the hold time no.

	0
	1
	0
	1 J n (hold time no.)

	7 6 5 4 3 2 1
Specifies the sound duration
	0

	0
	1
	1
	0
	
	2nd: Sound duration
data

	7 6 5 4 3 2 1 0
Specifies the tempo

	my
i011
	1
	l
	
	2nd: Tempo data

II.
III.
IV.
V.
VI.
VII.
VIII.
7	6	5	4	3	2	1	0

	
	7
	6
	5
	4
	3 2 10

	1st.
	0
	0
	0
	0
	. interval.^ n (rest >

•	0Sn£12

	n = 0
	R
	Rest
	

	1
	C
	do
	

	2
	C+, D-
	do#,
	b
re

	3
	D
	re
	

	4
	D+, E-
	
	.b
mi

	5
	E
	mi
	

	6
	F
	fa
	

	7
	F +, G-
	fa#,
	solb

	8
	G
	sol
	

	9
	G +, A —
	sol#,
	lab

	10
	A
	la
	

	11
	A + B-
	la#
	si^

	12
	B
	si
	

	7
	6
	5
	4
	3 2 10

	l
	0
	0
	0
	.interval,. n (rest)

	7
	6
	5
	4
	n = same as I
3 2 10

	0
	m
	(sound
	duration)

[bookmark: bookmark86]•	1 Sm^64
	64
	* 1 '

	56
	’ 2.,

	48
	’ 2.

	32
	’ 2 1

	24
	* 4.

	16
	1 4 '

	4
	’ 16’

	2
	’32’

	1
	1 64 *

	0-
	0

	7
	6
	5
	4
	3 2
	1 0

	0
	0
	0
	1
	
	

 (
1-2 Specifies the interval and rest within the same
octave, and specifies the sound duration
)
 (
II-l Directly specifies the interval by a number
)
 (
II-2 Directly specifies the interval by a number, and
)
7	6	5	4	3	2	1	0
 (
7-
12
)
 (
7-
14
)
 (
7-
13
)

 (
2nd.
) (
0
) (
n (interval)
)

1 £ n .<72
	1
	' 1 ’
	Octave
	3
	C

	2
	’ 2 ’
	//
	3 -
	C t

	12
	’ 12’
	Octave
	3
	B

	13
	’ 13'
	//
	4
	C

	70
	’70’
	Octave 8 -
	-A

	71
	’71 ’
	- 8
	- A

	72
	'72'
	8
	B

 (
III
) (
1st.
) (
7
6
5
4
3 2 10
0
0
0
1
7
6
5
4
3 2 10
1
n
(interval)
*
n = same as II
7
6
5
4
3 2 10
0
m
(sound duration)
) (
spefifies the sound duration.
) (
2nd.
) (
3rd.
) (
* m = same as 1-2, 2nd
)

Specifies the octave
	7
	6
	5
	4
	3
	2 1 0

	0
	0
	1
	0
	0
	n (octave)

· 0 =£ n ^ 5
· n = 0 Octave 3
1 "	4
2 "	5
3 "	6
4 "	7
[bookmark: bookmark88]5-8
	7
	6
	5 4
	3 2 10

	1
	0
	A0
	trans- . | n 'position' |

	0 £ n £ 11
	

	> n ^
	- 0
	
	7

	
	1
	
	8

	
	2
	
	9

	
	3
	
	10

	
	4
	
	11

	
	5
	
	

	
	6
	
	

1st.

 (
Specifies the transposition
)
 (
VI. Specifies the hold time no.
)
 (
V. Specified the envelope form (no.)
)
 (
7
6
5
4
3
2
1
0
• 0 £ n £ 15
)IV. Specifies the sound volume
 (
7-
15
)
 (
7-
16
)
 (
7-
17
)

	n =15
	0
	(dB)
	9
	-11 (dB)
	3
	-19.5
	(dB)

	14
	- 2
	(dB)
	8
	13 (dB)
	2
	-21.5
	(dB)

	13
	4
	(dB)
	7
	-12.5 (dB)
	1
	-23.5
	(dB)

	12
	6
	(dB)
	6
	-14.5 (dB)
	0
	OFF
	(dB)

	11
	7
	(dB)
	5
	16.5 (dB)
	
	
	

	10
	9
	(dB)
	4
	18.5 (dB)
	
	
	

	7
	6
	5
	4
	3 2
	1 0

	0
	1
	0
	0
	n (envelope No.)

• 0^nS7

• n = 0 envelop no. 0 1 - 1 2-2 3	-	3
4- 4
5- 5
6- 6
7	-	7

 (
7
6
5
4
3
2
i
0
0
1
L°_
1
n
(hold
time no.)
) (
Sound
duration
) (
: Sounding time period
)

 (
VII Specifies the sound duration
)

 (
7-
18
)
 (
7-
20
)
 (
7-
19
)
 (
VIII
) (
7
6
5 4
3 2 10
1
°
1
1
1
°
j
7
6
5 4
3 2 10
0
n
(sound duration)
*:
n = same as 1-2, 2nd
) (
Specifies the tempo
) (
2nd.
) (
7
6
5
4
3
2
1 0
|o
1
1
1
7
6
5
4
3
2
1 0
n
(tempo)
) (
• 1 £ n^255
) (
• n :
) (
Quarter notes per minute
)

[bookmark: bookmark92]7-3 Interrupt by the SML interpreter (user)
When the SML interpreter gets a command from the play buffer in the processing, it can access the user routine.
7-3-1 User routine address storage
Addresses are stored at SEXTA in the numeric information table. At release, an RET instruction stores these addresses.
7-3-2 Transfer parameter
Breg^=3 Channel no. (0,1,2)
Oregon Get pointer
Xreg<£n Relative channel control table head address
Commands executed by the SML interpreter can be got by reading the address obtained by adding the contents of the Xreg and the Creg.
. For a two-byte instruction, the next address data is read also.
For a three-byte instruction, the next address data must be read also.
. Do not fail to reserve Breg. Do not change to interrupt enable.
. Several hundred yseconds should be allowed for the user's processing.

[bookmark: bookmark93]7-4 How to use the noise generator
Tone
Generator# 3
 (
Clock
N = 3
) (
Fig. 7-3 Noise generator block diagram
)

User-definable items are listed below.
1. Noise source (synchronous, white)
2. Shift rate (N/512, N/1024, N/2048
Tone generator #3)
3. Attenuation (0 dB - OFF)

[bookmark: bookmark94]Chapter 8 Printer Handler
CONTENTS
1. Print-out control by the POUT control flag 	 3-1

2. POUT instructions 	 8-2

 (
8
)
 (
8
)
8- [bookmark: bookmark95]1 Print-out control by output characteristic flag
8-1-1 Output characteristic flag instruction
[bookmark: bookmark96]76543210
|	 Outputs LF continuously
following CR (line feed)
	 Automatic line feed
	 Tab simulation
Bit 0 — Flag for unconditional output of LF when CR is output as a terminator.
Bit 1 — Flag for automatic output of LF when data reaches the number of logical digits of the printer.
Bit 2 — Flag for tab simulation in eight-column increments when a tab code is received.
 (
8-
2
)
 (
8-
3
)
 (
8-2 POUT instructions
)Subroutine calling sequence
Subroutine name:	POTCH
	Address:
	1799H

	Function:
	Outputs one character

	Input
Registers
	Contents

	Acc
	Output character

Register save:	Acc,B,C,D,E,H,L,X,Y
This subroutine outputs one character to a printer The terminator, output characteristics, etc. are invalid. The head position is updated.
Subroutine calling sequence
Subroutine name:	POTLN
	Address:
	17C7H

	Function:
	Outputs the text

	Input
Registers
	Contents

	B
	Data size

	H,L
	Data buffer head address

	Output
Registers
	Contents

	Acc
	Data last output

	B
	Data size - bytes of data output

	H,L
	Data address last output + 1

Register save:	X,Y

This subroutine outputs a text according to the output characteristic flag. Output terminates when the number of bytes of data indicated in register B is output or when a terminator is encountered.
Subroutine calling sequence
Subroutine name:	POTBL
	Address:
	1805H

	Function:
	Outputs one block of data

	Input
Registers
	Contents

	B,C
	Data size

	H,L
	Data buffer head address

	Output
Registers
	Contents

	Acc
	Data last output

	H,L
	Data address last output + 1

Register save:	D,E,X,Y
This subroutine outputs the number of bytes indicated in register B. There is no terminator. Control by the output characteristic flag is not provided.

[bookmark: bookmark98]Chapter 9 Other System Information
Contents
1. System table 	 9-1
CTC interrupt vector
Restart 4-7 interrupt vector Memory range
2. Application ROM 	 9-49
Save in monitor (header)
Return to monitor
3 . ACMT application program 			„ . . . 		 9-52
 (
9
)
 (
9
)
9- [bookmark: bookmark99]1 System table explanation (refer to M5 MAP. SR)
 (
Address Label (in hexadecimal),
7000
IVCTCO
CTC channel 0
L
Interrupt vector
H
7002
IVCTC1
CTC channel 1
L
Interrupt vector
H
7004
IVCTC2
CTC channel 2
L
Interrupt vector
H
7006
1VCTC3
CTC channel 3
L
Interrupt vector
H
7008
IVCTC6
RST 6
INST
Interrupt vector
L
H
700B
IVCTC7
RST 7
INST
Interrupt vector
L
H
700E
SCCDTA
Control code
L
Jump table head address
H
7010
SMEMTA
System memory
L
Start address
H
7012
SMEMEA
System memory
L
End address
H
7014
SUMMTA
User memory
L
Start address
H
7016
SUMMEA
User memory
L
End address
H
)9-1-1 System table (26 bytes)
Initial value (in hexadecimal)
	
	6C

	
	18

	
	61

	
	18

	
	6C

	
	18

	
	DF

	
	01

	k
	C3

	
	00

	
	00

	k
	C3

	
	00

	
	00

	
	CD

	
	14

	
	00

	
	70

	
	00

	
	80

	
	00

	
	73

	
	00

	
	80

	
	

 (
9-
#
)
 (
9-
1
)
 (
System table
)
 (
System memory end address
)
Address label
 (
9-
2
)
 (
9-
4
)
 (
9-
5
)

 (
7018
7019
) (
SVSSSW
STDLY
)

SVSSSW flags

 (
76543210
)

 (
Layout
)Write page ("0": Page 0, "l": Page 1)
Display screen
("0": Processing screen display, "1": Spare screen display) Display page ("0": Page 0,
"1": Page 1)
("0": Layout I, "1": Layout II)
CTC channel 0 interrupt vector
Jump address when a CTC channel 0 interrupt is requested. A CTC channel 0 interrupt is requested when the SIO signal is received, so CTC channel 0 is usually free.
CTC channel 1 interrupt vector
Jump address when a CTC channel 1 interrupt is requested. CTC channel 1 is used for the music support .
CTC channel 2 interrupt vector
Jump address when a CTC channel 2 interrupt is requested. CTC channel 2 is not used for the system.
CTC channel 3 interrupt vector
Jump address when a CTC channel 3 interrupt is requested. CTC channel 3 is used for screen control.
Control code jump table head address
Head address of a table that provides jump destinations in response to control codes ("00" through "IF") input from the keyboard. When a user defines a control code, the head address of the control code jump table defined by the user must be set here.
System memory start address Head address of RAM memory.
End address of RAM memory.
User memory start address
Head address of the user memory area.
User memory end address
End address of the user memory area.
Screen select switch
Selects page 0 or 1 of VRAM, layout change, etc.
	Bit 0 (WRTPGE)
	Write page
"0": Selects page 0. "I": Selects page 1.

	Bit 1 (DSPTBL)
	Display screen
"0" : Displays the processing screen.
"1": Displays the spare screen

	Bit 2 (DSPPGE)
	Display page
"0": Displays page 0.
"I”: Displays page 1.

	Bit 3 (LAYOUT)
	VRAM layout "0": Layout I "1": Layout II

	ACMT baud rate
	factor

The expression for the ACMT baud rate factor is as follows:

	1	
 (
B(BPS)
)3 (STn + n2)
 (
B
1
 - 3nl
3ST
)B-1 - 84 x 10 13.4 x 10~6
B:	Baud rate	(bps)
T:	CPU clock	period = 279	(nsec)
n:	Number of	delay loops
nls	Overhead time prior to	and	posterior
to the loop. (228 ysec)
9-1-2 Keyboard information table (34 bytes)

 (
* * * *
)
 (
Initial value
(in hexadecimal)
)Address Label (in hexadecimal)
 (
9-
6
)
 (
9-
10
)
 (
9-
9
)

 (
701A
KINFLG
Key input control flag
701B
KBCTET
Keyboard conversion table
L
Head address of save table
H
701D
ASWN01
Attack switch No. of joypad #1
701E
J0YDR1
Direction of joypad #1
701F
ASWN02
Attack switch No. of joypad #2
7020
J0YDR2
Direction of joypad #2
7021
JOYPRC
Interrupt processing of joypad
L
Address
H
7023
ASWPRC
Attack switch
L
Interrupt address
H
7025
RSTPRC
Reset key
L
Interrupt address
H
7027
HLTPRC
Halt key
L
Interrupt address
H
7029
PHSKAD
Address of last pressed key
702A
LSKYST
Last pressed auxiliary key
702B
LKYADR
Address of last input-approved key
702C
CHATIT
Chatter prevention counter
702D
ARPSTI
Auto-repeat start time
I
702E
ARPSTW
Auto-repeat start time
W
702F
ARPITI
Auto-repeat interval
I
7030
ARPITW
Auto-repeat interval
W
)94
[bookmark: bookmark102]E7
[bookmark: bookmark103]09
00
[bookmark: bookmark104]00
[bookmark: bookmark105]00
[bookmark: bookmark106]00
[bookmark: bookmark107]2E
[bookmark: bookmark108]00
[bookmark: bookmark109]2E
[bookmark: bookmark110]00
[bookmark: bookmark111]IB
[bookmark: bookmark112]02
[bookmark: bookmark113]IB
02
00
00
[bookmark: bookmark114]00
05
[bookmark: bookmark115]IE
[bookmark: bookmark116]IE
04
[bookmark: bookmark117]04

 (
*
) (
* * *
)

[bookmark: bookmark118] (
KBUFTA
Keyboard buffer Head address
L
H
DF
70
KDTPPT
Keyboard buffer put pointer
00
KDTGPT
Keyboard buffer get pointer
00
KBFSIZ
Keyboard buffer size
3F
KINWTM
Key input period
L
00
H
00
KINWTM
Key input standard period
3C
TERMAL
Terminator from ACELN
00
BELKF
Click frequency factor
04
BELKFL
Click length
02
)7031
[bookmark: bookmark119]7033
[bookmark: bookmark120]7034
[bookmark: bookmark121]7035
[bookmark: bookmark122]7036
[bookmark: bookmark123]7038
7038 [bookmark: bookmark124] 703A 703B
KINFLG flags
	7
	6 j 5
	4
	3
	2
	1
	0

Key input mode (LSB) flag
Key input mode (MSB) flag
Key input mode-change flag ("1" = Already changed)
Type ahead mode flag ("1" = Type ahead)
Reset key done flag ("1" = Busy, "0" = Ready) Continuous scrolling flag) ("1" = Continuous scrolling) Click switch flag ("1" = ON, "0" = OFF)
LSKYST flags
	7
	6
	5
	4
	3
	2
	1
	0

Control key flag Function key flag Left shift key flag Right shift key flag Special control key flag
Key input control flags
These flags control information input from the keyboard and joypad.
. Key input mode flag
Indicates keyboard mode.
"00" = Letter mode "01" = Capital mode
"10"= Graphics mode
. Key input mode-change flag
Indicates that the key input mode changed.
. Type ahead mode flag
Switching of pre-press keyboard mode
"0" = Type ahead mode relased »1" = Type ahead mode
. Reset key done flag
"0" =	Ready	The	reset	key	is	enabled.
"1" =	Busy	The	reset	key	is	disabled.
. Continuous scrolling flag "0" = No mode change "1" = Continuous scrolling occurred.
. Click switch flag
Switches when a key is pressed. "0" =	OFF
"1" =	ON
. Attack switch No. of joypad

 (
How the joypad is read
1
8
UP
2
) (
7 LEFT
 0
 RIGHT 3
) (
The joypadcis. scanned at every timer interrupt to determine its setting.
)This is not currently supported.
 (
9-
11
)
 (
9-
14
)
 (
9-
13
)

6	DOWN	4
5
. Joypad interrupt address
Control passes to the address when the joypad is moved. If the joypad position does not change, control passes to the preset return instruction address is used.

Attack switch interrupt address
Control passes to this address when the attack switch is pressed. If the attack switch is not pressed, control passes to the preset return instruction address is used.
Reset key interrupt address
Control passes to this address when the reset key is pressed. If the reset key is not pressed, control passes to the preset return instruction address.
Halt key interrupt address
'Control passes to this address when the halt key is pressed. If the halt key is not pressed, control passes to the preset return instruction address.
Address of last pressed key.
Address of last input-approved key
Chatter prevention counter
To prevent chatter when a key is pressed, the signal of a pressed key remains on for a period determined by a counter. After the count reaches 0, key input is enabled.
Auto-repeat start time (I)
. Auto-repeat start time (W)
The number of interrupts possible from the pressing of a key untiL auto-repeat start is set to I. "W" indicates the number of interrupts a counter counts until auto-repeat starts.
. Auto-repeat interval (I)
. Auto-repeat interval (W)
Indicates that the repeat interval interrupts during auto-repeat and is set to I. "W" indicates the work area.
. Keyboard buffer head address
Head address of the area where key input information is stored.
. Keyboard buffer put pointer
The offset from the keyboard buffer head indicates where information is saved in the keyboard buffer.
. Keyboard buffer get pointer
The offset from the keyboard buffer head indicats where input key information is obtained from the key buffer.
Keyboard buffer size
Indicates the size of the keyboard buffer size, which is given by 2n - 1 (n = 1, 2,,8).

Key input switching time
Key input period and key input standard period
 (
Actual wait (sec)
) (
key input
(
period
) (
key input standard period
) (
) x 1/60
)Indicate the time after key input that another key input can be made. If another key input does not take place within this time, a time-out error occurs. The actual waiting time is given by the following expression:

If no key input period is specified, a time-out error does not occur (wait time is unlimited). If no key input standard period is specified, it is set to 256 by default.
Terminator from ACELN
ACELN uses two kinds of terminators. They are listed below for reference.
Click frequency factor Fixed.
Click length Fixed.
 (
9-1-3 Event control table (30 bytes)
) (
Address Label (in hexadecimal)
) (
Initial value
(in hexadecimal)
) (
703C
EVMGFG
703D
EVMXN0
703E
EVIFTA
7040
UEVMGF
7041
UPCTBI
7042
UPCTBW
7043
(JPCNT
7045
DWCTBI
7046
DWCTBW
7047
DWCNT
7049
CLKBTW
704A
CLOCKS
) (
Event management flags
) (
Maximum number of events saved
) (
Event information table Head address
) (
User event management flag
) (
Upcount standard time
) (
Upcount
) (
Downcount standard time
) (
Downcount
) (
System clock standard time
) (
System clock second data
) (
23
00
00
00
00
3C
3C
00
00
3C
3C
00
00
3C
00
) (
w
) (
w
)

 (
EVMGFG flags
)

 (
9-
15
)
 (
9-
16
)
 (
9-
17
)
 (
704B
CLOCKM
704C
CLOCKH
704D
ALHTM
704E
ALMTH
704F
ALMPRC
7051
EVHPRC
7053
SPRPRC
7055
SPSTUS
7056
SPSTEP
7057
SPSTPC
7058
BELKC
7059
BELC
) (
System clock alarm time (minute)
) (
00
00
FF
FF
2E
00
2E
00
2E
00
80
02
01
00
00
) (
(hour)
)System clock minute data
hour data
Alarm processing Head address
Hourly processing Head address
Sprite interrupt processing Head address
Sprite status
Sprite move step
Sprite move step
Keyboard click counter
Bell counter

 (
76543210
)

Sprite synchronous display ("1" = System clock switch ("1" = ON)
Up counter switch ("1" = ON)
Down counter switch ("1" = pN) Joystick switch ("1" = ON) Keyboard switch ("1" = ON)
User event switch ("1" = ON)
 (
ON)
)Down counter end flag ("1" = ON)

 (
UEVMGF flags
) (
76543210
)

Event operation flag
("1" = Underevent operation)

SPSTUS flags
76543210
-y	-J
I	 Fifth sprite nurtiber
	—	 Sprite coincidence flag ("1" =
	 Fifth sprite flag ("1" = True)
 (
coincidence)
) (
")
)			 Frame interrupt flag (Always "1
These flags are used to manage events.
	Bit 0 (SPRSW)
	Sprite synchronous display switch Flag to requests support when using an event to move the sprite
"1": Receives support

	Bit 1 (CLOKSW)
	System clock switch
Switch turns the system clock on.

	Bit 2 (UPCTSW)
	Up counter switch
Switch starts the up counter.

	Bit 3 (DWCTSW)
	Down counter switch
Switch starts the down counter.

	Bit 4 (JOYSW)
	Joystick switch
Switch causes the direction of the joystick to be scanned during an interrupt.
"1": ON

	Bit 5 (KEYSW)
	Keyboard switch
Switch causes the keyboard to be scanned during an interrupt. Setting this bit to "0" does not cause the keyboard to be scanned immediately.

	Bit 6 (UEVSW)
	User event switch
Switch causes user events to be
supported.
Setting this bit to "0" stops all user events.

Bit 7 (DWDNFG) Down counter end flag
When the down counter stops (becomes "0")/ this bit is set to "1".
Maximum number of events saved
Number of user events saved. A maximum of 40 events can be saved.
Event table head address
Head address of the table for saved user events. User event management flag
Prevents other event processing from starting before one user event processing ends. While this flag is "1", it is assumed that a user event is currently operating, and other events cannot be started.
Up counter standard time (I/W)
Up counter
The up counter standard time is the parameter that determines the count of the up counter. "I" indicates the initial value and "W" the work area.
This parameter represents the number of channel 3 interrupts. System interrupts occur every 1/60 second : the count is incremented at this time.
 (
Event management flags
)
 (
Down counter
)

Down counter standard time
 (
9-
18
)
 (
9-
20
)
 (
9-
21
)
Like for the up counter, the down counter standard time indicates the initial setting of a counter, but the count is decremented each time.
System clock standard time
Standard internal time of the computer. The initial value is set to 60, and updates the second counter of the internal clock every second.
Second data of the system clock
Minute data of the system clock
Hour data of the system clock
Indicates the hour, minute, and second of the internal clock.
Alarm time of the system clock (minute)
Alarm time of the system clock (hour)
Head address of alarm processing
At the set time (hour(s) and minute(s)), control passes to the alarm-processing routine.
Hourly processing head address
Control passes to this address by an interrupt when it is 0 minute and 0 second.
Sprite interrupt processing head address
The head address of the routine for sprite interrupt processing.
Sprite status
Indicates the VDP status register according to the interrupt frame and sets the value.
Bits 0-4 Fifth sprite number
When five sprites are arranged in the same horizontal line, the fifth sprite number is given.
Bit 5	Sprite coincidence flag
When two sprites coincide, this bit is set to "1".
Bit 6	Fifth sprite flag
When five sprites are arranged in the same horizontal line, this bit is set to "l".
Biy 7	Frame interrupt flag
Always "1"
Sprite move step (SPSTEP)
Sprite move step (SPSTPC)
A feature determines how many dots should be moved by one interrupt processing when using a system event to move the sprite. The number of dots (N) is set to SPSTPC, and 2n is set to SPSTEP.
Keyboard click length counter
, Bell counter
Bell tone duration (count)
 (
. Keyboard click length counter
)

Event information table (user defined)
 (
9-
22
)
 (
9-
#
)
 (
9-
23
)

 (
Offset
Label
0
SUPDLY
l
SUPDLH
2
SUPITV
3
4
EVPRC
5
) (
— Event wait flag
Support
L
Lag time
H
Support
i
Interval
w
Event .
processing ^ Head address
H
) (
= wait)
)

The event information table is defined by a user for the RAM user area and is used to support user events for the system.
. Support lag time . Event wait flag
When an event is supported, the lag time from support start to processing is set to in is bits of byte 1 and byte 2. Bit 7 of byte 2 is the event wait flag.
If the event is not processed and becomes "0" when the wait flag is "1", the system supports the event.
. Support interval
Determines how many event support intervals and interrupt frames occur for each support processing.
. Event processing head address
Head address of supported event processing.
 (
76543210
)9-1-4 POUT management table (3 bytes)
Initial value
Address Label	(in hexadecimal)
(in hexadecimal)		 	
	705A
	POUTFG
	Output characteristic flag
	
	07

	705B
	PMXCLM
	Maximum number of printers
	
	50

	705C
	PHDPOS
	Virtual head position
	
	00

	
	
	
	
	

POUTFG flags

Outputs LF continuously following CR when "1".
Automatic line feed when "1"
TAB simulation when "1"
. Output characteristic flags
Indicate control conditions when text is output from POUT.
Operation when each bit is "1" is shown below.
Bit 0	After CR ("OD") has been output
LF ("OA") is output.
Bit 1	When the head position reaches the
maximum number of digits, CR (or CR and LF) is output automatically.
Bit 2	Provides the tab simulation in increments
of 8 digits. The code output during tab simulation is SP ("20"). (Supports POTLN only.)
Maximum number of digits
The number of logical digits of a device (printer) connected to POUT (80 digits by default).
Head position

 (
9-1-5 Music information management table (49 bytes)
)
The head position of a connected printer. It is set to "0" when CR is output or the head position reaches the maximum number of digits. Otherwise "1" is added each time a character is output.
 (
9-
24
)
 (
9-
26
)
 (
9-
25
)

 (
Address (in hexadecimal)
Label
705D
SEXTA
705F
SEVPA
7061
TMPOD
7062
TMPOC
7063
MSCAL
7064
SGSYT
) (
7072
7080
708E
) (
^
14

bytes
SGSYT2
?
14

bytes
SGSYT3
? 14
bytes
) (
User routine Head address
) (
Envelope data table Head address
) (
Tempo counter constant
) (
Tempo counter
) (
Transposition data
) (
Interpreter
Management table 1
) (
Interpreter
Management table 2
) (
Interpreter
Management table 3
) (
Initial value (in hexadecimal)
54
18
79
1A
IF
IF
00
)

. User routine head address
The head address of a user routine which is run whenever a musical performance interrupt is requested. If this is not specified, control passes to the return instruction address.
. Envelope data table head address
The head address of the table of envelope data (up to seven envelopes). Data for one envelope consists of 8 bytes: 4 bytes for rising and 4 bytes for release. (Refer to Appendix 7, the standard envelope table.)

Tempo counter constant
This area is reserved for tempo counter constants, as determined by the tempo instruction.
Tempo counter
Used to set a down counter, which calls the PLAY routine each time the count reaches "0".
Transposition data
Contains a number from 0 to 11 which indicates the basic sounds determined by the transposition instruction.
 (
c
”0"
c
#
11
1
'■
D
"2"
B
b
(
A
#)
B
f- "B"
)Example:
Interpreter management table (14 bytes) Offset
(in hexa- Label
	uyuiinai;
0 SGSYTl—3
1
2
3
	Play buffer Head address
	L
H
	
	

	
	Play buffer size
	
	20

	
	Put pointer
	
	00

	4
	Get pointer
	
	00

	5
	Hold time number
	
	07

	6
	Volume
	
	00

	7
	Octave
	
	02

	8
	Default sound length
	
	10

	9
	Envelope data
	L
	
	00

	A
	Head address
	H
	
	00

	B
	Envelope data get pointer
	
	10

	C
	Sound length counter
	
	00

	D
	Hold time counter
	
	00

	
	
	
	

. Play buffer head address
Indicates the play buffer head address.
. Buffer size
Indicates the number of bytes in the play buffer (254 bytes maximum).
. Put pointer
Indicates the position of the next put operation.
_ .play buffer . .put Execution address ^head address	pointer
Hold time number
Indicates the hold time (0 - 8) .
Volume
Sets the volume of the sound generator (attenuation). Does not work when the envelope is specified.
Octave
Indicates the octave. A range of six octaves, from 3 to 8, can be specified. la (A) of the octave 4 is 440 Hz.
Default sound length
When the sound length is omitted, this value is used.
Envelope data head address
Indicates the head address of the envelope data.
Envelope data get pointer Envelope data get pointer (0 - 15)
Sound length counter
This is a down counter and when it indicates "0", the next command is processed.
Hold time counter
This is a down counter and when it indicates "0", the volume is turned OFF. When the envelope is specidied, moves to the release.

 (
Address (in hexadecimal)
Label
708E
708F
SYSFMT
PUTPMT/
GTPMT
7090
AVILMT
7091
BSIZMT
7092
RWBFMT
7094
) (
SYSFMT flags
) (
76543210
)Buffer select switch ("1" = VDP, "0" = CPU RAM) Loading mode ,("1" = Verify)
Write open flag ("1" = True)
. System flags
Used to control saving and loading programs and data to/from ACMT.
Bit 0 BUFSMT	Selects the ACMT buffer.
"0": CPU RAM "1":	VDP RAM
Bit 1 LDMONT	Loading mode
"0":	None
 (
9-1-6 ACMT table (6 bytes)
)
"1":	Verify
 (
9-
27
)
 (
9-
28
)
 (
9-
29
)
"0":	None
"1":	Under write open
Data put/get pointer
Used to put or get data to or from the ACMT buffer. Number of significant digits
The number of characters when the data does not fill the buffer completely, etc.
ACMT buffer size ACMT buffer size
ACMT buffer head address
 (
Bit 2 OPNFMT
Write open flag
)
 (
Bit 2 OPNFMT
Write open flag
)
ACMT buffer head address

 (
9-1-7 Screen table (Processing screen table, 36 bytes)
)
 (
*
* * *
)
 (
DIFLGA flags
)

 (
9-
29
)
 (
9-
30
)
 (
9-
31
)
 (
Address
(in hexa- Label decimal)
) (
7094
DIFLGA
Screen information flag
00
7095
CODTLA
Pattern code table
L
00
Head address
H
38
7097
CCOTLA
Character color table
L
80
Head address
H
3B
7099
CPATLA
Character pattern table
L
00
Head address
H
28
709B
SATTLA
Sprite attribute table
L
00
Head address
H
3B
709D
SPATLA
Sprite pattern table
L
00
Head address
H
20
709F
BDCOLA
Background color
E0
70A0
UPRMVA
Upper margin of viewport
00
70A1
LFTMVA
Left margin of viewport
00
70A2
HEITVA
Height of viewport
18
70A3
WIDTVA
Width of viewport
20
70A4
HEITDA
Height of screen
18
70A5
WIDTDA
Width of screen
20
70A6
CURSYA
Y coordinate of cursor
00
70A7
CURSXA
X coordinate of cursor
00
70A8
CURADA
Cursor address in VRAM
L
00
70A9
H
38
70AA
CCUCRA
Character code at cursor position
00
70AB
DISPCA
Time that cursor appears
10
* * * *
)

	70 AC
	ERSECA
	Time that cursor does not appear
	
	10

	70AD
	BELFA
	Bell frequency
	
	08

	70AE
	BELFLA
	Bell tone length
	
	0E

	70AF
	GRFLA
	Graphics flag
	
	09

	70BO
	GCURYA
	Y coordinate of graphics cursor
	
	

	70B1
	GCURXA
	X coordinate 6f graphics cursor
	
	

	70B2
	GPLPRA
	Dot display processing for graphics II
	
	

	70B4
	GIMPRA
	Image display processing for graphics 2
	
	

	70B6
	MPLPRA
	Pixel display processing for multi-color graphics
	
	

	
	
	
	
	

 (
76543210
)

Display mode 0
("0" = Overwrite, "1" = Insert)
Display mode 1
("0" = Control execution, "1" = Display)
Screen lockup flag ("0" = Movable, "1" = Locked up)
Cursor status 1
("0": Does not appear, "1": Appears)
Cursor status II
("0": Cursor is in the viewport., "1": Cursor out) VDP display mode M3
VDP display mode M2
VDP display mode Ml

 (
GRFLGA flags
) (
76543210
)

Graphics mode 0 Graphics mode 1 Graphics mode 2 Sprite size 0 Sprite size 1 Sprite size 2 Sprite magnification Sprite solution
Indicates the control status of the processing screen.
Bit 0 DMODEO Display mode 0
"0" = Overwrite mode "1" = Input mode
In the overwrite mode, writes over characters already written - old characters are erased when new characters are written.
In the insert mode, shifts characters already written to the right one position then writes the new character .
Bit 1 DMODEl Display mode 1
"0" = Executes the control "lu = Displays the control
When "0", executes the control code without change. When "1", displays code characters for the control code as reverse characters.
	CTRL
	+
	Character
	corresponds to "0", and

	CTRL
	+
	SHIFT
	+
	Characters
	correspond to "1"

Bit 2 SCRLOC Screen lockup flag
"0" = Operative "l" = Lockup
Usually trying to display a character at the lower right corner of the screen causes the screen to scroll automatically. In the screen lockup mode,
a character can be entered there without scrolling the screen. The cursor then returns to the home position.
	Bit 3
	CURON Cursor status I
n0" = The cursor does not appear "l" = The cursor appears.

Indicates the cursor blink status.

	Bit 4
	CUROUT Cursor status II
"0" = The cursor is in the view* port.
"1" = The cursor is not in the viewport.

Indicates whether the cursor is positioned in the viewport or not.
	Bit 5
	M3 = VDP display mode

	Bit 6
	M2

	Bit 7
	Ml

Indicates the screen display mode.
	M1M2M3
	

	"000" =
	Graphics I mode

	"001" =
	Graphics II mode

	"010" =
	Multi-color mode

	"100" =
	Text mode

Pattern code table head address
Indicates the head address of the pattern name table of the processing screen (address in VRAM).
Character color table head address
Indicates the head address of the character pattern generator.
Sprite attribute table head address
Head address of a table with 32 four-byte records which show the sprite attribute. No meaning in the T mode.
Sprite pattern table head address
Head address of the pattern generator for the sprite.
Background color
The upper four bits indicate character colors in the T mode. The lower four bits indicate the background color (boundary color) in each mode.
Left margin of viewport
Upper margin of viewport
Viewport height
Viewport width
Screen height

. Screen width
 (
. Screen information flags
)

 (
x = o
) (
X =31or39
) (
Y= 0
) (
P
o
) (
J
) (
p
P C CT> Q) -H
<D <U
P P O
) (
4-1
0
G
■H
) (
P
(U
&
£
) (
Viewport width
) (
P
•&
•H
CD
P
P
u
o
) (
Q)
■H
>
) (
Lower
margin
)Left margin of viewport
 (
9-
32
)
 (
9-
36
)
 (
9-
37
)

 (
Y =23-
)Right
margin
Screen width
(32 or 40)		
1	 In T mode
The left and upper margins are included in the viewport when the viewport is cut. This means that the X-coordinate of the upper left corner in the viewport is the left margin, and the Y-coordinate is the upper margin.
/Viewport. _ .lower , _ .upper ,	,
'height	'margin' margin
.Viewport, _ .right , _ .left ,	,
'width] 'margin' 'margin'
The screen width is 40 in the T mode and 32 in other modes. The screen height is always 24.

X and Y coordinates of the cursor
Coordinates on the screen indicate the current cursor position.
Addresses in VRAM of the cursor
The address in the VRAM indicates the current cursor position.
Character code on the cursor position
Saves the character code at the current cursor position.
Cursor appearance time Cursor non-appearance time
Determine the cursor appearance time and non- appearance time when the cursor is blinking.
Bell frequency
Bell tone length
Determine the bell frequency and tone length.
Graphics flags
Used for graphics display.
Graphics modes
Indicate a display procedure for graphics.

Mode 1 Mode 0
 (
Mode 2
0
) (
0
) (
0
) (
1
)0	0	= Replace
Replaces the currently displayed color with the assigned color without changing the assigned color.
0 1	= OR
ORs the code of the assigned color and the code of the color currently displayed and displays the color for the resulting code.
1 0	AND
ANDs the code of the assigned color and the code of the color currently displayed and displays the color for the resulting code.
0	0	XOR
XORs the code of the assigned color and the code of the color currently displayed and displays the color for the resulting code.
0	0	= Erase
Erases the assigned color and the currently displayed color so that a new color can be displayed.
Sprite size
Indicates the vertical and horizontal dimensions (in dots) of the sprite.
	Mode 2
	Mode 1
	Mode
	0

	0
	0
	1
	= 8 dots x 8 dots

	0
	1
	0
	= 16 dots x 16 dots

	1
	0
	0
	= 32 dots x 32 dots

Sprite magnification
Indicates the magnification used to display the sprite.
"0" = 1 x (no magnification)
"1" = 2 x (double magnification)
(The 8x8 sprite is displayed as 16 x 16 dots.)
Sprite resolution
Indicates the resolution of the sprite.
"0" =8x8 dots "l" = 16 x 16 dots

 (
9-1-8 Function key management table
)
The following four possibilities are available for the sprite size, magnification, and resolution in relation to the VDP. Sprites are restricted to these four types according to the three sprite flags above.
 (
9-
38
)
 (
9-
40
)
 (
9-
39
)
	Resolution
	Magnification
	
	Size

	8
	X
	8
	1
	8
	X
	8

	8
	X
	8
	2
	16
	X
	16

	16
	X
	16
	1
	16
	X
	16

	16
	X
	16
	2
	32
	X
	32

. Graphics cursor position (X, Y)
Cursor position in the graphics display mode
In both the GII mode and the multi-color mode, the upper left corner of the viewport is the origin. In the GII mode, the position is indicated by a coordinate system in dot units. In the multi-color mode, the position is indicated by coordinates of a 4 x 4-dot pixel.
* Graphics handling is not included in the M5 monitor, but it is in the external graphics handler (M5 XGR .SR).
	Address (in hexadecimal)
	Spare screen Label
	table
	(36 bytes)

	70B8
	DIFLGP
	
	
	

	?
	?
	
	
	

	70DA
70DB
	MPLPRP
	
	
	

The table configuration is same as that for the processing screen information table.
	Address (in hexadecimal)
	Label
	
	

	70DC
	FKMGFG
	Function key management
	flag

	70DC
	FKIFTA
	Function key
	; L

	70DE
	
	Information head address; H
i

FKMGFG flags
76543210
I	Number of function keys (up to 26)
	 Function key data format
("0": With a counter,
"1": Without a counter)
. Function key management flag Function key data format As data committed to function keys:
"0" when setting with a counter "1" when setting without a counter Number of function keys
Up to 26 function keys can be assigned.
 (
. Function key table head address
)

 (
9-1-10 Sprite management table (35 bytes)
)
Function key table head address (See following figure.)
 (
9-
41
)
 (
9-
44
)
 (
9-
45
)

 (
Without a counter
With a counter
)

It is impossible to mix or use data with a counter and data without a counter as existing data.

9-1-9 System buffer
	Address (in hexadecimal)
70DF
	Label
	
	

	
	KEYBUF
	Keyboard buffer (64 bytes)

	71 IF
	ACMTBF
	ACMT buffer (64 bytes)

	715F
	SGPBF 1
	SG buffer (reg (32 bytes)
	1)

	717F
	SGPBF 2
	SG buffer (reg (32 bytes)
	2)

	719F
	SGPBF 3
	SG buffer (reg (32 bytes)
	3)

71BF

Address (in hexadecimal)
[bookmark: bookmark135] (
Label
MXPSNO
Maximum number of posts
SPIFTA
Sprite information
L
Table head address
H
SPUNK
Sprite #0
Sprite #1
) (
Sprite
)71BF
[bookmark: bookmark136]71C0
[bookmark: bookmark137]71C2
[bookmark: bookmark138]71E1
The post and connecting sprite are not supported by the inter-monitor handler of this computer. Support is implemented by the external sprite handler (M5 XSP .SR).

o Maximum number of posts
The maximum number of posts saved in the system is 12 when the sprite is supported by the system event. When "0", no support is given.
o Sprite table head address
Head address of the sprite table
o Sprite linkage
 (
connection
)Indicates the sprite operating jointly and the connection status. The sprite consists of 32 bytes: #0 through #31.
	7 6 5
	4 3 2 1 0

	t 1
	[

Sprite numbers connected. Connection point:
	"000"
	
	No connection

	"001"
	
	Overlapping at the same position

	"010"
	
	Right side (00)

	"011"
	
	Left side (01)

	"100"
	
	Lower side (10)

	"101"
	
	Upper side (11)

	"110"
	
	f Unused — Do not use.

	"111"
	:
	J

(*) Refer to sprite connection
handling (extra sprite handler)

Address
 (
Lable
)(in hexadecimal)
[bookmark: bookmark139]71E2
[bookmark: bookmark140]721D
 (
9
-i-n Sprite table
)
 (
The first byte of each post is sprite information.
)
 (
The first byte of each post is sprite information.
)
The sprite table is used when the user is supported by the system event and moves the sprite. System support consists of three types: type A, type B, and type C. These types are started by saving a five-byte table called the post. Upto 12 posts can be saved.
 (
9-
46
)
 (
9-
#
)
 (
9-
47
)

 (
SPIFLG
) (
6 5
) (
4 3 2 1 0
)

Sprite numbers
Sprite numbers supported. Sprites connected to other sprites are also supported in the same procedure.
Support format
Identification flag of sprite support format
"00 " :	Type	A
"01 " :	Type	B
"10" :	Type	C
Support format
Support request flag for posts "0 " : Does not request support. "1" : Requests support.
 (
R
00
Sprite No.
Move speed
i
w
Move vector
Y
X
) (
Sprite information flag
)Type A support moves the sprite in a fixed direction. The speed is indicated by the number of interrupt frames per move and has a maximum of 1.
 (
. Type A support
)
 (
. Type C support
)

The move vector moves by one time support. The number of dots is specified in the (X,Y) direction. When all sprites have disappeared from the screen, support ends.
 (
9-
48
)
 (
9-
52
)
 (
9-
51
)

 (
. Type B support
)

Type B support moves the sprite towards the target position.
 (
R
01
Sprite No.
Move speed
i
w
Target position
Y
X
) (
Sprite Information flag
)The speed is indicated by the number of interrupt frames per move, like type A support.
The move each time is determined by the number of sprite move steps in the event management table.
The target position is indicated by a coordinate in dot units for both X and Y. When the sprite reaches the target, support ends.

 (
R
10
Sprite No.
Objective
position Y
i
w
Objective
position X
Y
X
) (
Sprite information flag
)Type C support moves the sprite relative to the target position. The difference from type B support is that type C support moves to the target position at one time. Hence, the support is completed with one move.
[bookmark: bookmark143]9-2 Application ROM 9-2-1 Save in monitor
For running the application ROM cartridge under the control of the monitor, a header in the following format must be added to the program head.
 (
Cartridge identification flag
Program auto
L
Start address
H
Special IPL
L
Start address
H
RST4
Jump table
RST 5
Jump table
)Header
Applica
tion
program
#1
Applica
tion
program
#2
. Cartridge identification flag
Indicates the capacity and location of the ROM cartridge.
	"00" :
	8K
	ROM at
	address
	2000H

	"01" :
	8K
	n
	ii
	4000H

	"02" :
	16K
	ii
	H
	2000H

Program auto-start address
Control passes to this address when the system comes up.
Specify the return instruction address in advance if auto-start is not required, because control passes without exception.
Special IPL start address
During a bootstrapstract, control begins from this address. If this address is not provided, specify the return instruction address in advance.
RST4 jump table
RST5 jump table
When the restart 4 or restart 5 address is used in an application program, control jumps to this address of the header. Thus, you must write an instruction to jump to the restart processing in advance.

If the restarts 4 and 5 are not used in the application program, nothing need be done.
 (
9-
53
)
 (
9-
56
)
 (
9-
55
)
9-2-2 Return to the monitor
To return to the monitor from an application program, control must pass to BTCMT after the following conditions have been established:
1. Initialization of the system table <Routine example>
	LD
	HL,
	SYTIDI
	(System
	table initializations)

	LD
	DE,
	SYSTBL
	(System
	table) (Note 1)

	LD
	BC,
	SETBLC
	(Number
	of bytes)

	LDIR
	
	(11 bytes)

2. Set the stack pointer value to the system stack initial value,
SYSTAK = 7300H
3. If interrupt processing is synchronized with music during SML (music routine), reset it.
Restore SEXTA "00"
4. If other special processing is being executed,
reset all of them. Control jumps to BTCMT after the processing has been completed.
Note:	Initialize VDP (CAL VDPINT) at the program
head of tape read by BTCMT.
 (
M5
SYTDL
"0165"H
SYSTBL
"7000"H
SETBLC
"005D"H
)Note 1:

[bookmark: bookmark144]9-3 ACMT application program (called "tape program")
To load an application program from ACMT, execute a TAPE instruction in BASIC and load the program. The program can run as soon as the program load has been completed, but the file attribute in the file ID must be in the execution format.
 (
Note:
)"0" = Data "1" = Execution format " 0" = Loading only,
"1" = Auto start
This means that the bit 0 of the file attribute is handled as "l". Setting bit 1 to "l" causes immediate execution when the load is completed. When bit 1 is "0", the program is only loaded.
Comment:	Loading by chaining several
programs (illustrated below) causes programs A - N to be loaded and automatically start at N.
 (
I
A
I
B
D
D
Loading only
) (
•*
) (
I
N
D
) (
L
) (
L
) (
Loading only
) (
L
) (
Auto-start
)

The procedure for loading the next program from tape is same as loading a program from an application ROM.

CONTENTS
1. Standard font table 	 10-1
2. 10-shift keyboard arrangement 	 10-2
3. Control code table 	 10-10
4. Error code table 	 10-11
5. Monitor work table 	 10-13
6. ACMT format 	 10-14
7. Standard envelope table 	 10-17
8. I/O port table 	 10-19
9. Memory map 	 10-21
10. Color code table 	 10-24
 (
Chapter 10 Appendices
)
 (
Chapter 10 Appendices
)
11. Linkage map 	 10-25

 (
10
)
 (
10
)

 (
10-
1
Standard font table
)

 (
10-2-2 Letter shift mode
)

 (
10-
2
)
 (
10-
3
)
 (
0
1
■”i
jL
T
45
hi
■7
1
Pi
ft
0
Sip
■%
P
i
a
r«i
k^a
1
1 fl Q
d
q
■“«
jL
13
 ft
II
•“i
BRb
r
-r
fSbl
ft #
“T
.Jl
C S
c
-
4
!&1
U
$■

4
 D T d t
5
i*si
13
111
■
a
.
ET
.J
EU
P
IJ
6
\M
I
5
i
i\;
hi
F U
?
I..I
-7
r’
i'rt
i
3
ii
-7
f
G lil
'?
I.J
n
i”i
! = S
uS j
Si
r
i”i
i”i
HX
h
9
is a
)
9
I V
i
y
fl
y
rJ
C
3
+
#
a
JZ
j
“T
B
ft
Ki
Lai
+
a
n
K C k
/
\
f:
Li
—+
L \
1
l’
1
D
m
ill
t-
-
—
Ml
Hi
*1
J
E
r
■
N
A
n
’V
F
LI
3
■”i
0
 _
IJ
4
) (
3 9 H E: C D E F
)

10- [bookmark: bookmark148]2 Keyboard arrangement
	10
	11
	12
	13
	14
	15
	16
	17
	50
	51
	52
	53
	57

RESET
J

	07
	20
	21
	22
	23
	24
	25
	26
	27
	60
	61
	62
	63
	07

	

	00
	30
	31
	32
	33
	34
	35
	36
	37
	64
	65
	66
	67
	06

	40
	41
	42
	43
	44
	45
	46
	47
	54
	55
	56
	03

Each key has a code, as shown above. The ten1s digit of
«
the key code indicates the one's digit of the input port for the key. The one's digit of the key code represents the bit position. Input ports have assigned identifiers from "30" to "36".
Ex.:	Key "31" corresponds to bit 1 of port "33".
10-2-1 Relationship of keys and character codes in each mode
Letter mode
	1
	2
	3
	4
	5
	6
	7
	8
	9
	0
	-
	
	¥
	

	FUNC
	q
	w
	e
	r
	t
	y
	U
	i
	0
	p
	@
	[
	CR

	

	CTRL
	a
	s
	d
	f
	g
	h
	j
	k
	1
	»
	•
]
	SP

	SHIFT
	z
	X
	c
	V
	b
	n
	m
	>
	•
	/
	_ SHIFT

Auxiliary key information
	0
	0
	0 | 0
	= 1
i	1
	0
	0
	0

 (
FUNC
Q
W
E
R _
*
T
Y
U
I
0
P
{
CR
CTRL
A
S
D
F
G
H
J
K
L
+
*
}
SP
) (
SHIFT
Z
X
C
V
B
N
M
<
>
?
< SHIFT
i
) (
Auxiliary key information
0
0
0
0
/
7
0
1
1
j O |
) (
0
1
1
0
1
1
) (
10-2-3 Capital mode
) (
1
2
3
4
5
6
7
8
9
0
-
-
¥
) (
FUNC
Q
W
E
R
T
Y
U
I
0
P @
[
CR
CTRL
A
s
D
F
G
H
J
K
L
»
•
]
SP
) (
SHIFT
Z
X
C
V
B
N
M
1
•
/
_ SHIFT
) (
Auxiliary key information
0
0 j 0
°
0
0
0
0
)

	I
))
	it
	$
	%
	&
	*
	(
)
	
	=
	
	i

	FUNC
	q
	w
	e
	r
	t
	y
	u
	i
	0
	p
	N
	{
	CR

	

	CTRL
	a
	s
	d
	f
	g
	h
	j
	k
	1
	+
	*
	}
	SP

SHIFT

	Z
	X
	c
	V
	b
	n
	m
	<
	>
	9
	< SHIFT
i	

Auxiliary key information
	0
	0
	0
	0
	?
	z
	1	
	0

 (
10-2-4 Capital shift mode
)
 (
10-2-
6
 Graphics mode
)
 (
10-2-
5
 Graphics mode
)
[bookmark: bookmark149]0 1 1 0 1 I
 (
10-
4
)
 (
10-5
)
 (
10-5
)

Auxiliary key information
	0
	0
	0
	0 | 0 j 0
	0

Example:
	1
	2
	3
	4 5
	6 | 7
	8 | 9 | 0
	-
	* ¥
	

	

	FUNC
	a
	a
	L 1 ■
	4
	mmU
	r.
	g
	
	IN
	CR

	CTRL
	E
	m
	1
	0
	1 Ii
	i ii
	a
	
	SP

	SHIFT
	n
	~j~T~
	
	u
	
	*
	o
	~ SHIFT 1

	
	
	\
	\
	\
	
	\
	\
	
	
	\
			1

	SHIFT
	ED
	E5
	EF
	F8
	F9
	FA
	FB
	<
	>
	El
	E4 SHIFT
	i	

Example:
	[
	
	' it
	$ % &
	(
)
	0
	0
		—] i
~ I RESET
i i

	FUNC
	A
	01
	- ■
k. x
	aQuonmoi

	CTRL
	
	+ =1
	> = 1
	11
	□
	>:DLUQI

	SHIFT ^
	F
	
	M
	E
	0
	O
	l SHIFT

Auxiliary key information
	1
	0
	0
	0
	0
	0
	0
	1

Only when a key of the tzad section is pressed.
 (
10-2-
7
 Control
)
 (
10-2-8 Control shift
)
 (
10-2-9 Function
)
Special control key

 (
10-
8
)
 (
10-
9
)

 (
FUNC
) (
Q W
) (
R
) (
U
) (
0
) (
CR
) (
SHIFT |
Z
X
C
V
B
N
M
l
SHIFT
i
) (
CTRL A
) (
D
) (
H
) (
K
) (
SP
) (
Auxiliary key information
1
0
0 ! °l
0
1
) (
Only when —-1 a key of the ^ section is pressed.
L
0
J
1
1
0
Effective
only when
1
1
bit
1
 is
"
0
 ".
)

1	1
RESET
j	i
	FUNC
	16
	22
	4
	17
	19
	24
	20
	8
	14
	15
	
	
	CR

	

	CTRL
	i01|S!3
	5
	6
	7
	9
	10
	11
	
	
	
	SP

	SHIFT
	25
	23
	2
	21
	1
	13
	12
	
	
	
	SHIFT.

Eample of function key assignment
QWERTYU I OP

Note:	For the details of functions, etc., refer to
the display handler section.
 (
Code
(Hexa
decimal)
Rela
tive
key
00
@*
01
A
02
B
03
C
04
D
05
E
06
F
07
G
08
H
09
I
0A
J
0B
K
OC
L
*
0D
M
0E
N
OF
O
10
P
11
Q
12
R
13
S
14
T
15
U
16
V
17
W
18
X
19
Y
1A
Z
IB
r
L
1C
¥ *
ID
j
IE
IF
-
) (
Jump address routine name
) (
DSPCH3
DSPGM3
SCTOSD
SCRDW
SCRLF
SCRUP
SCRRG
BEL
DELTC
TABLT
LFEED
HOHEP
CLRSC
CRETL
SNTOSD
STOVRM
STINSM
MMODE
GMODE
CMODE
TMODE
NRMSC
REVSC
CRETE
CANCL
RVDSPP
RVWRTP
DSPCH3
RGTAW
LET AW
UPRAW
LWRAW
)Function
No operation No operation
Seeks the statement head
Scroll down
Scroll left
Scroll up
Scroll right
Bell
Delete
Tabulation
Line feed
The cursor moves to the upper left corner of the viewport Clear screen
Carriage return (regarded as a line terminator)
Seeks the head of the next statement
Overwrite mode
Insert mode
Multi-color mode
Graphics II mode
Graphics I mode
Text mode
Page 0 is applied to both the display screen and processing screen.
Both the display screen and the processing screen are switched.
Enter (same operation as carriage return) Cancel
Display page switch Processing page switch No operation
Moves the cursor right one character Moves the cursor left one character Moves the cursor up one character Moves the cursor .down one character
Note:	* Keys marked by an asterisk do not correspond
to the keyboard.

	Error
code
	Error
code
(hexa
decimal)
	Comment
	Sample of processing to return relative error code

	124
	7C
	Spare
	
	User definition

	125
	7D
	Exceeded
viewport
	MVACS
RDSCH
	Cursor move
One character read from screen

	126
	7E
	Reached
target
	GTSTEP
	Find a move vector for the sprite to reach the target

	127
	7F
	Sprite disappeard from screen
	MVSPA MVS PR
	Sprite position change Relative move of sprite

	128
	80
	ACMT file is being used
	
	

	129
	81
	Checksum
error
	BLOAD
RDQPN
RFIDC
	Consecutive area load (ACMT) Read open (ACMT)
File ID read

	130
	82
	Break key was
pressed.
	BSAVE
BLOAD
RFIDC
	Consecutive area save Consecutive area loop File ID read and file name comparison

	131
	83
	File name differs.
	BLOAD
RFIDC
	Consecutive area load File ID read and file name comparison

	132
	84
	Data
exceeded
buffer
capacity.
	RDSTM
ETRFK
EDTLN
ACELN
PTKDT
	One-line read from screen Save of function key Edit input from keyboard 1-text input from keyboard Saves one character from keyboard

	133
	85
	Detected EOF/ no data.
	BLODD
GTKDT
	Data block load
Takes one character from
keyboard buffer

	134
	86
	Display
mode
inadequate.'
	STICOL
	Establishment of character colors

	
	Error
	
	
	

	Error
	code
	Comment
	
	Sample of processing to return

	code
	(hexa
decimal)
	
	
	relative error code

	
	
	
	
	

	135
	87
	Time-out
	ACECH
	One character input

	
	
	error
	EDTLN
	Edit input

	
	
	
	ACELN
	One line input

	136
	88
	Sprite
	MVS PR
	Relative move of sprite

	
	
	position
exceeded
	MVS PA
	Position change of sprite

	
	
	support range.
	GTSPOS
	Gets sprite attributed

	137
	89
	Inadequate
	CIEW
	Viewport establishment

	
	
	command
	STCHR
	Character establishment

	
	
	parameter
	RDCHR
	Character read out

	
	
	
	STMBF
	Play buffer set

	138
	8A
	Sprite
position
unknown
	
	

	139
	8B
	Underevent
	STRTDC
	Down counter start

	
	
	operation/ not continual) le
	STRTUC
	Up counter start

	140
	8C
	Illegal
block
detected
	BLOAD
	Data block load

	141
	8D
	Spare
	
	User definition

Note:	Routines to return error codes listed above show
only one example. For further details, refer to the calling sequence of the source list.
It should be noted that many of routines with only one kind of an error do not output an error calling sequence to Acc at the error time, but merely use a carry to decide the error.
 (
10-3
Control code table
)

 (
10-4 Error code table
)
Codes not to output MSB ("7C" - "7E") among the error codes are not errors, merely warnings.
 (
10-
10
)
 (
10-
12
)
 (
10-
11
)

 (
10-5 Monitor work table
)
 (
10-5 Monitor work table
)

 (
7223
7224
7226
7227
724E
7250
7252
7254
7255
) (
UEVCT
UEVPT
LNBUP
) (
LNBP.l
SCRDFR
SCRCOR
CURPSV
SCKLCH
AVRHL
) (
Event support counter
) (
Event support pointer
) (
Line buffer
) (
40 bytes
) (
Data area for scrolling Data area for scrolling
Cursor position save area
) (
ACMT
Work for handler (3 bytes)
) (
52-byte work area for
LFDTBT LCPAT
) (
31-byte buffer for ACMT file ID read
) (
7279
) (
72C0 SYSTKL
) (
7300
) (
SYSTAK
) (
Unused area
) (
System stack
) (
User area
) (
64 bytes
)

[bookmark: bookmark165]10-6 ACMT format

 (
. File ID configuration
)
 (
Add to non- consecutive data
). File format
 (
10-
16
)
 (
10-
15
)

 (
Blank
run
) (
Tape
mark
) (
File
ID
) (
l
B
G
) (
Data
block
) (
B
G
) (
Data
block
) (
1
B
G
) (
Data
block
) (
I
B
G
) (
EOF
block
)

 (
Blank run
) (
Tape mark: File ID: IBG:
)Non-recording time
(about 4 seconds, with a tape recorder having the head-out feature)
8,000 marks (3,000 Hz -* 2.7 records)
File name, file attribute
Non-consecutive data -* 3,600 marks Consecutive data	512 marks

 (
Identification flag:
) (
"H"
(48) :
File ID
"D"
(44) :
Data block
"E"
(45) :
EOF block
)

 (
Note:
The EOF
)block is added only when non-consecutive
data is output.

 (
File attribute
) (
1
2
3
4
5
6
7
8
9

11
12
13
) (
File name
(9 characters)
) (
Loading start Address
) (
Data (program) Size (bytes)
) (
0
1
0
Data
Execution format (machine language)
\
1
Loading only
Auto-start
\
2
Conseutive
data
Data file
\
3
CPU memory
VDP memory
\
Without
With
\
4
expansion
expansion
\
attribute
attribute
\
5
cation (Z)
\
\
\
6
7
(2)
) (
Language classifi-= 0 cation
) (
14
1
5
16
17
18
19

21
22
23
24
25
26
27
28
29
30
) (
Program Start address
) (
Expansion
attribute
) (
Blank area (13 bytes)
) (
Basic-1
source
Falc
Basic-G
Basic-F
Reserved
Reserved
Reserved
)

Byte format
 (
(Number of bits)
(Period)
1
'
0
' 2 T
8
'
0
' 2 T or '
'
1

1
.
ip
1
'
0
' T
10
 bits
)(Name) Start bit Data bit Stop bit Total
 (
b
) (
o
)Ex.

 (
MSB stop
) (
bit
)M
Start LSB bit
. Recording wave form: 1-waveform FSK
("0": f, "1": 2f)
. Transmission rate:	Optional (1600 - 3200 bps)
[bookmark: bookmark175]10-7 Standard envelope table
Envelope #0: Without envelope Envelope #1:
 (
Attenuator
level
) (
Data:
01234567 89ABCDEF
)Note)

 (
Envelope #2
)Each step in the envelope is a 64th note at the tempo in force. The duration of the unchanging part of the envelope is found by subtracting the preceding and following envelopes from the total envelope length.

 (
Envelope #3
)Data:	FEDCA98 7654321F

Data:	01234567 7654321F
 (
Envelope #4
) (
Data:
76543210 1234567F
) (
Envelope 5
) (
Data:
02468ACE 2468ACEF
) (
Envelope
#6
) (
Data:
FC840123 456789AF
) (
Envelope
#1
) (
Data:
FC840123 4543210F
)

 (
10-
18
)
 (
10-
20
)
 (
10-
19
)
[bookmark: bookmark176]10-8 I/O port table
	Port No. (decimal)
	Label
	Description

	Z80 C
	T C

	00
	CTCCH0
	Channel 1 #0: SIO interrupt

	01
	CTCCH1
	Channel 1 #1: Peripheral timer

	02
	CTCCH2
	Channel 1 #2: SIO clock generator

	03
	CTCCH3
	Channel 1 #3: VDP blanking

	
	
	(frame) interrupt

	VDP TMS
	9918A

	11
	VDSTAP
	Status port

	11
	VDCNTP
	Screen base address & control port

	11
	VDADRP
	VRAM address port

	10
	VDRDTP
	Data read port

	10
	VDWDTP
	Data write port

	Sound generator SN76489AN

	20
	SOUNDP
	Sound generator control

	Keyboard

	30
	KEYMD0
	row #0

	31
	KEYMD1
	#1

	32
	KEYMD2
	#2

	33
	KEYMD3
	#3

	34
	KEYMD4
	#4

	35
	KEYMD5
	#5

	36
	KEYMD6
	#6

	Port No. (decimal)
	Label
	Description

	Joystick attack switch

	37
	JOYDTP
	

	Reset/halt key

	50
	RSTKYP
	Reset/halt key data port RSTKFG = 7 Data bit position

	Cassette tape

	50
	
	ACMTOP
	Output port
ACMTO = 0 data bit position

	50
	
	ACMTIP
	Input port
ACMTI = 0 data bit position

	50
	
	M0T0RP
	Output port
MOTOR = 2 ACMT remote switch Bit position = 1

	Parallel output

	40
	
	PRTDTP
	Data

	50
	
	PRTSBP
	Strobe
STROBE= "0" strobe bit position

	50
	
	PRTBYP
	Busy
Busy = "1" Busy bit position

 (
10-9 Memory map
)
 (
VRAM memory map
) (
2000
)
 (
VRAM memory map
) (
2000
)

 (
10-
21
)
 (
10-
22
)
 (
10-
#
)
 (
Internal map
’0000
’2000
’4000
’6000 ’7000 ’8000
) (
’ FFFF
) (
-M5.SAV
(Internal
) (
8KB
ROM)
) (
ROM area
) (
External ROM cartridge MAX 16KB
) (
Reserved area
) (
Internal RAM 4KB
External RAM cartridge MAX:
8KB
) (
Expansion
cabinet
MAX: 32KB
) (
User
RAM area
)

 (
t
Free area (8KB)
) (
Sprite
pattern table (Common on page 0 , page 1)
)Note:
In case of Layout 1, the addresses 0 through 1FFF of VRAM can be used as a user area.

(2048 bytes)
[bookmark: bookmark181]2800 	
Character - generator table
(Page 0)
(2048 bytes)
[bookmark: bookmark182]3000 	
Character generator table (Page 1)
(2048 bytes)

 (
3800
) (
3B00
3B80
3000
) (
3F00
3F80
4000
) (
Pattern name table (Page 0) (768 bytes)
) (
Page 1 Pattern name table (768 bytes)
) (
 P age 0
Sprite attribute table (128 bytes)
Page 0
Character color table (32 bytes)
) (
Page 1
Sprite attribute table (128 bytes)
Page 1
Character color table (32 bytes)
)

 (
Layout II
)

 (
10-
23
)
 (
10-
24
)
 (
10-
#
)
[bookmark: bookmark190] (
10-10
)Color code table
	Color
	Code

	Transparent
	0

	Black
	1

	Green
	2

	Light green
	3

	Dark blue
	4

	Light blue
	5

	Dark red
	6

	Cyan
	7

	Red
	8

	Light red
	9

	Dark yellow
	A

	Light yellow
	B

	Dark green
	C

	Magenta
	D

	Grey
	E

	White
	F

LOAD MAX = 1FF- C
	.ACMIU
	003F
	.BREAK
	0041
	.BUFFL
	0043
	.CAT RG
	003D

	.CHKSM
	0040
	.DATOT
	0044
	.EVNRD
	004A
	.FINUM
	0042

	.ILGBL
	004B
	.1LGCM
	0048
	.1LGDM
	0045
	.OVIEW
	003C

	.SPNFD
	0049
	.SPRDA
	003E
	.SPROS
	0047
	.TIMOT
	0046

	ACECH
	0827
	ACECH1
	0845
	ACEDEL
	078A
	ACELN
	07A9

	ACEST
	066F
	ACSCH
	OFOO
	ADDVCT
	041B
	ADJSTD
	OOOD

	ADJSTL
	0018
	ADJSTR
	0023
	ADJSTU
	001E
	BEEP
	1181

	BEL
	1176
	BELK
	116A
	BLKMV
	0B75
	BLKMV2
	0B81

	BLKMVC
	ODCB
	BLKTRS
	1454
	BLNKC
	0629
	BLOAD
	153B

	BLOOD
	1579
	BSAVD
	1563
	BSAVE
	1529
	BTCMT
	010D

	BTCMTO
	one
	CALKAD
	097B
	CALSTV
	047A
	CANCL
	13BB

	CCURML
	148C
	CCURMM
	1469
	CCUROT
	1481
	CCUROX
	1486

	CCUROY
	1493
	CHGCP
	0707
	CHKRAM
	008E
	CHKROM
	00E4

	CHKSM
	OOCC
	CHKSTV
	048E
	CHKYM
	073F
	CHNGLC
	0D5E

	CLKBF
	077B
	CLOKSP
	0242
	CLRSC
	1393
	CLRSCX
	1394

	CLRSS
	137E
	CMODE
	0DD8
	CMPCUR
	0784
	CNTLC
	1073

	CPATA
	1 ADI
	CPATAR
	1AB1
	CPATC
	1B5D
	CPATGO
	1C75

	CPATG1
	•1EFD
	CPATK
	1D75
	CPFNM
	1765
	CRET
	13CD

	CRETL
	10ED
	CTC3EX
	023C
	CTC3SP
	01DF
	CTCINT
	01C2

	CURCOL
	1D25
	CURODX
	1485
	CUROEY
	1492
	CURPTB
	09B7

	CVLOF
	118B
	CVTIR
	0E61
	DECAD
	08DA
	DECFN
	0933

	DECTR
	090B
	DELSPR
	03C5
	DELTC
	OFAB
	DIVIDS
	0151

	DIVS5
	0152
	DSPCH
	1088
	DSPCHA
	1083
	DSPCHB
	1082

	DSPCHK
	1085
	DSPCU
	064E
	DSPLN
	1063
	DSPLTA
	105C

	DSPLTB
	105B
	DSPLTK
	105E
	DSPMX
	•11ED
	DSPSC
	0C64

	DWCTSP
	0275
	EDTLN
	0668
	EDTST
	0689
	ERR124
	003B

	ERRET
	004 D
	ERRTBL
	003B
	ERSCU
	0638
	ERSPRA
	1387

	ERSSPR
	03CC
	ETREIT
	0356
	EXTBL
	1076
	FILSP
	0F27

	FNDMY
	049B
	FNTRST
	0B5E
	FRMSC
	0C77
	GBV
	OODF

	GBVRAM
	14C5
	GBVRID
	0018
	GCURSA
	13F7
	GDIFLG
	OOCF

	GFACMX
	1260
	GFCCP
	0E90
	GMODE
	0B1F
	GTAST
	1A4A

	GTCAPC
	0085
	GTEVMF
	0351
	GTKDT
	08AC
	GTSATA
	0369

	GTSCLK
	02DB
	GTSPLC
	03EE
	GTSPOS
	042B
	GTSPPC
	0377

	GTSTEP
	049F
	GTVDMD
	0D34
	HOMEP
	13B6
	IGNORB
	021B

	IGNORI
	186C
	IGNORJ
	186D
	INST C
	109F
	ITG2M
	ODFB

	JMPHL
	05FE
	JOYDTB
	09A7
	JOYSP
	05A5
	KAALPH
	09F3

	KAALPS
	0A25
	KAGRPH
	OABB
	KAGRPS
	OAED
	KAKANA
	0A57

	KAKANS
	0A89
	KBCAT
	09E 7
	KEYSP
	0511
	LCPAT
	0D89

	LCPATB
	0B86
	LCPATG
	0B64
	LCPTGC
	0B67
	LDBYT
	16B3

	LDBYT1
	16B6
	LFEED
	•10F0
	LFTAW
	10FF
	LKUKT
	08F5

	LOADC
	1652
	LTBFC
	1556
	LWRAW
	10F6
	M5B0T
	0058

	MAGFY
	045C
	MLTAL
	1441
	MMODE
	0C44
	MPLAY
	1861

	MTROF
	177E
	MTRON
	1776
	MULTHD
	142C
	MVACS
	13DD

	MVCURE
	1 IBB
	MVSNXL
	0672
	MVSPA
	03CE
	MVSPR
	040B

	NRMSC
	0C5C
	NULPAD
	0860
	OUTPS
	163 A
	OVRWC
	10CA

	PAD
	0861
	PADVRM
	0E01
	PAGEM
	0C28
	PAGET
	0C1F

	PBV
	00D7
	PBVRAM
	14BD
	PBVRID
	0010
	PCLMX
	1784

	PLAY
	186F
	POTBL
	1805
	POTCH
	1799
	POTLF
	1794

	POTLN
	17C7
	POTNL
	178D
	PTINT
	0C15
	PTINTD
	0C14

	PTKDT
	0869
	RATBL
	1650
	RATBLF
	164D
	RBTCMT
	0033

	RCCSM
	OOCA
	RCCSMM
	00C7
	RDCHR
	0E75
	RDCNT
	1739

	RDFID
	1598
	RDSCH
	14B1
	RDSCHA
	14AC
	RDSMX
	120E

	RDSTM
	OEEC
	RDVPM
	144B
	REVSC
	0E2E
	RFIDC
	1587

	RGTAW
	10FC
	RSTO
	0000
	RST 1
	0008
	RST2
	0010

	RST3
	0018
	RST 4
	0020
	RST5
	0028
	RST6
	0030

	RST7
	0038
	RSTRDC
	0336
	RSTRUC
	030D
	RSTSP
	05FF

 (
10-11 Linkage map
)

 (
10-
25
)
 (
10-
28
)
 (
10-
27
)
	RVDSPP
	0C62
	RVWRTP
	0E31

	SCRDW
	12BF
	SCRLF
	130 A

	SCTOS
	119E
	SCTOSD
	13D5

	SGINTS
	181E
	S1FTD
	103C

	SNTOS
	11CA
	SNTOSD
	13DA

	STBCOL
	0C97
	STBYT
	1626

	ST ClBL
	0DF8
	STDM1
	04PF

	STFRQ
	1A 01
	STFRQD
	1A24

	STOPDC
	0340
	STOPUC
	0313

	STPCU
	1100
	STPCUD
	1126

	STPCUU
	1147
	STRTDC
	0319

	STSCHR
	0E58
	STSCLK
	02CF

	STVFC
	1A3C
	STVOL
	1A3A

	SYTIDT
	0165
	TABLAT
	115A

	UEVSP
	028F
	UPACP
	OBEC

	UPPTP
	08A3
	UPRAW
	10F9

	VIEWP
	135C
	V1EWRS
	1353

	VREGRI
	0471
	WAITST
	1717

	WDVLB
	145C
	WDVPM
	1460

	WTKDTC
	0756
	
	

	SCCDT
	14 CD
	SCNKB
	0966

	SCRRG
	12F9
	SCRUP
	12B3

	SETBLC
	005D
	SGINT
	1811

	S1FTL
	0FD3
	SIFTR
	0F3A

	SRLAD
	16D1
	STOVOL
	1A38

	STCCHR
	0E55
	STCHR
	0E59

	STEVMF
	0348
	STFCOL
	0C83

	STICOL
	0ED3
	STINSM
	OF IE

	STORC
	15ED
	STOVRM
	0F19

	STPCUL
	1134
	STPCUR
	1116

	STRTKT
	0992
	STRTUC
	02FB

	STSCOD
	0454
	STSCOL
	0445

	STVRAO
	14A1
	STVWAD
	149F

	TABLT
	1158
	TMODE
	0D04

	UPCLOK
	02E4
	UPCTSP
	0265

	VCTIR
	0E7D
	VDPIN r
	OEOB

	VOFAC
	1A31
	VREGI
	0CA3

	WATBL
	15EB
	WATBLF
	15E8

	WRTSC
	0E33
	WTFID
	15C3

	RSTO
	0000
	RST1
	0008
	ADJ STD
	OOOD
	PBVRID
	0010

	RST2
	0010
	ADJSTL
	0016
	GBVRID
	0018
	RST3
	0018

	ADJSTU
	00 IE
	RST 4
	0020
	ADJSTR
	0023
	RST5
	0028

	RST6
	0030
	RBTCMT
	0033
	RST7
	0038
	ERR124
	003B

	ERRTBL
	003B
	.OVIEW
	003C
	. CATRG
	003D
	.SPRDA
	003E

	. ACfil U
	003F
	.CHKSM
	0040
	.BREAK
	0041
	.FINUM
	0042

	. BUFFL
	0043
	.DATOT
	0044
	.ILGDM
	0045
	.TIMOT
	0046

	.SPROS
	0047
	.ILGCM
	0048
	. SPNFD
	0049
	.EVNRD
	004A

	.ILGBL
	004B
	ERRET
	004D
	M5B0T
	0058
	SETBLC
	005D

	GTCAPC
	0085
	CHKRAM
	008E
	RCCSMM
	OOC 7
	RCCSM
	OOCA

	CHKSM
	OOCC
	GDIFLG
	OOCF
	PBV
	00D7
	GBV
	OODF

	CHKROM
	00E4
	BTCMT
	010D
	BTCMTO
	one
	DIVIDS
	0151

	DIVS5
	0152
	SYTIDT
	0165
	CTCINT
	01C2
	CTC3SP
	01DF

	IGNORE
	02 IB
	CTC3EX
	023C
	CLOKSP
	0242
	UPCTSP
	0265

	DWCTSP
	0275
	UEVSP
	028F
	STSCLK
	02CF
	GTSCLK
	02DB

	UPCLOK
	02E4
	STRTUC
	02FB
	RSTRUC
	030D
	STOPUC
	0313

	STRTDC
	0319
	RSTRDC
	0336
	STOPDC
	0340
	STEVMF
	0348

	GTEVMF
	0351
	ETREIT
	0356
	GTSATA
	0369
	GTSPPC
	0377

	DELSPR
	03C5
	ERSSPR
	03CC
	MVSPA
	03CE
	GTSPLC
	03EE

	MVSPR
	040B
	ADDVCT
	04 IB
	GTSPOS
	042B
	STSCOL
	0445

	STSCOD
	0454
	MAGFY
	045C
	VREGRI
	0471
	CALSTV
	047A

	CHKSTV
	048E
	FNDMY
	049B
	GTSTEP
	049F
	ST DM1
	04FF

	KEVSP
	0511
	JOYSP
	05A5
	JMPHL
	05 FE
	RSTSP
	05FF

	BLNKC
	0629
	ERSCU
	0638
	DSPCU
	064E
	EDTLN
	0668

	ACEST
	066F
	MVSNXL
	0672
	EDTST
	0689
	CHGCP
	0707

	CHKYM
	073F
	WTKDTC
	0756
	CLKBF
	0 77B
	CMPCUR
	0784

	ACEDEL
	078A
	ACELN
	07A9
	ACECH
	0827
	ACECHI
	0845

	NULPAD
	0860
	PAD
	0861
	PTKDT
	0869
	UPPTP
	08A3

	GTKDT
	08AC
	DECAD
	08 DA
	LKUKT
	08 F 5
	DECTR
	090B

	DECFN
	0933
	SCNKB
	0966
	CALKAD
	097B
	STRTKT
	0992

	JOYDTB
	09A7
	CURPTB
	09B7
	KBCAT
	09E7
	KAALPH
	09F3

	KAALPS
	0A25
	KAKANA
	0A57
	KAKANS
	0A89
	KAGRPH
	OABB

	KAGRPS
	OAED
	GMODE
	0B1F
	FNTRST
	0B5E
	LCPAT G
	0B64

	LCPTGC
	0B67
	BLKMV
	0B75
	BLKMV2
	0B81
	LCPATB
	0B86

	UPACP
	OBEC
	PT1NTD
	0C14
	PTINT
	0C15
	PAGET
	0C1F

	PAGEM
	0C28
	MMODE
	0C44
	NRMSC
	0C5C
	RVDSPP
	0C62

	DSPSC
	0C64
	FRMSC
	0C77
	STFCOL
	0C83
	STBCOL
	0C97

	VREGI
	0CA3
	TMODE
	0D04
	GTVDMD
	0D34
	CHNGLC
	0D5E

	LCPAT
	0D89
	BLKMVC
	ODCB
	CMODE
	0DD8
	STCTBL
	0DF8

	ITG2M
	ODFB
	PADVRM
	0E01
	VDPIN r
	OEOB
	REVSC
	0E2E

	RVWRTP
	0E31
	WRTSC
	0E33
	STCCHR
	0E55
	STSCHR
	0E58

	STCHR
	0E59
	CVTIR
	0E61
	RDCHR
	0E75
	VCTIR
	0E7D

	GFCCP
	0E90
	STICOL
	0ED3
	RDSTM
	OEEC
	ACSCH
	OFOO

	STOVRM
	OF 19
	STINSM
	0F1E
	FILSP
	0F27
	SIFTR
	0F3A

	DELTC
	OFAB
	SIFTL
	0FD3
	SIFTD
	103C
	DSPLTB
	105B

	DSPLTA
	105C
	DSPLTK
	105E
	DSPLN
	1063
	CNTLC
	1073

	EXTBL
	1076
	DSPCHB
	1082
	DSPCHA
	1083
	DSPCHK
	1085

	DSPCH
	1088
	INST C
	109F
	OVRWC
	•10CA
	CRETL
	10ED

	LFEED
	10F0
	LWRAW
	10F6
	UPRAW
	10F9
	RGTAW
	10FC

	LFTAW
	•10FF
	STPCU
	1100
	STPCUR
	1116
	STPCUD
	1126

	STPCUL
	1134
	STPCUU
	1147
	TABLT
	1158
	TABLAT
	115A

	BELK
	116A
	BEL
	1176
	BEEP
	1181
	CVLOF
	118B

	SCTOS
	119E
	MVCURE
	1 IBB
	SNTOS
	11CA
	DSPMX
	11ED

	RDSMX
	120E
	GFACMX
	1260
	SCRUP
	12B3
	SCRDW
	12BF

	SCRRG
	12F9
	SCRLF
	130A
	VIEWRS
	1353
	VIEWP
	135C

	CLRSS
	137E
	ERSPRA
	1387
	CLRSC
	1393
	CLRSCX
	1394

	HOMEP
	13B6
	CANCL
	13BB
	CRET
	13CD
	SCTOSD
	13D5

	SNTOSD
	13DA
	MVACS
	13DD
	GCURSA
	13F7
	MULTHD
	142C

	MLTAL
	1441
	RDVPM
	144B
	BLKTRS
	1454
	WDVLB
	145C

	WDVPM
	1460
	CCURMM
	1469
	CCUROT
	1481
	CURODX
	1485

	CCUROX
	1486
	CCURML
	148C
	CUROEY
	1492
	CCUROY
	1493

	STVWAD
	149F
	STVRAD
	14 A1
	RDSCHA
	14AC
	RDSCH
	14B1

	PBVRAM
	14BD
	GBVRAM
	14C5
	SCCDT
	14CD
	BSAVE
	1529

	BLOAD
	153B
	LTBFC
	1556
	BSAVD
	1563
	BLODD
	1579

	RFI DC
	1587
	RDFID
	1598
	WTF1D
	15C3
	WATBLF
	15E8

	WATBL
	15 E B
	STORC
	15ED
	STBYT
	1626
	OUTPS
	163 A

	RATBLF
	164 D
	RATBL
	1650
	LOADC
	1652
	LDBYT
	16B3

	LDBYT1
	16B6
	SRLAD
	16 D1
	WAITST
	1717
	RDCNT
	1739

	CPFNM
	1765
	MTRON
	1776
	MTROF
	177E
	PCLMX
	1784

	POTNL
	178D
	POTLF
	1794
	POTCH
	1799
	POTLN
	17C7

	POTBL
	1805
	SG1NT
	1811
	SGINTS
	181E
	MPLAY
	1861

	IGNORI
	186C
	IGNORJ
	I860
	PLAY
	186F
	STFRQ
	•1A01

	STFRQD
	1A24
	VOFAC
	1A31
	STOVOL
	1A38
	STVOL
	1A3A

	STVFC
	1A3C
	GTAST
	1A4A
	CPATAR
	1AB1
	CPATA
	1 ADI

	CPATC
CPATG1
	1B5D
•1EFD
	CPATGO
	1C75
	CURCOL
	1D25
	CPATK
	1D75

Copyright © 1983 by SORD COMPUTER CORPORATION.
All rights reserved. Printed in Japan.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SORD COMPUTER CORPORATION., Japan.

SORD COMPUTER CORPORATION
Kyobashi K-l Bldg. 2F., 7-12 Yaesu 2-Chome.
Chuo-ku, Tokyo 104, Japan
Telephone: (03) 273-3584
Telex:	2224225 SORDIN J
Cable Address: SORDCOMPCORP TOKYO
 (
SDE-0027
)644 August 1983 Printed in Japan ®

image13.jpeg

image14.jpeg

image15.jpeg
Om
mea
<

% Cursor

image16.jpeg
Up-scroll

1234

/ «Cursor

image17.jpeg
Cursor position

'
Viewport . ey

N

image18.jpeg
Viewport

Part displayed

image19.jpeg
y

image20.jpeg
Cursor position

(B)

e

ﬂ

©)

S

image21.jpeg
Other conditions: Cy=l No sentence top

image22.jpeg
Sentence

7. %

Ve

Cursor position

image23.jpeg
(D) (E)
'd

image24.jpeg
Null
'

7

/B |
2

Cursor position

image25.jpeg
|7

(D) (E)

Null

image26.jpeg
Cursor position

'

7

A

image27.jpeg
W

%
(D) (E)

image28.jpeg

image29.png
— i

_

zl._g

. I T

ZTW ;slxlo
B'Dign
LJl_Iv!ﬁ_H -
C TlﬂlTJ
L..l|ﬂ T _}_,_
> = — e =\
LpLr _L_Wﬂ
~sH~H € [
i

L HH - H]

image30.jpeg
Function key
control table

_— Number of
function
mat keys

Function key
information table
head address

Function key
information
table

/\/

Counter

Function key

pointer (no. 1)

(no. 2)

Character
string

" Sspecified
number of
pointers

(no. N)

(f

)]

or

/_\/

Character
string

Terminator

image31.jpeg

image3.jpeg

image32.jpeg
1°<
20

image33.jpeg
Pattern (&)

Hexadecimal
data

DML L —
oOmP > mOe

I
LTTTTTT

Sprite
pattern
table

Pattern #N
(8 bytes)

N

image34.jpeg
16 dots /\/

0
Sprite
pattern
o table
8N
" Pattern #N
B (a)
° (8 bytes)
9 8N+1
Pattern #N+1
(B)
D (8 bytes)
8N + 2
Pattern Nf +2
(c)
(8 bytes)
8N + 3
Pattern N# +3
(D)
(8 bytes)

N

image35.jpeg
N\

% Sprite
=g attribute
S~ table

Attribute of
4N | sprite #N
»»»»»»»» 4 (N+1) (4 bytes)

127

L N

image36.jpeg
\
\\ Deleted ;creen
Coordinate within a
(0, 0) range not displayed.
— 32 \
(EOH)
Y
+
Display screen
Range
shifted
by EC
(early 19 (BFH)
clock) . \
192\ (COH)

208 (DOH)

image37.jpeg
The slash part Horizontal overlapping
disappears (number of sprites)

L1 sprite
2 sprites

i

Sprite level

image4.jpeg

image38.jpeg
Coincidence

image5.jpeg

image39.jpeg

image40.jpeg
Event

Address gontrol
table

'704D — ALMTM

T04E — | ALMTH

704F — | ALMPRC
7050 —

image41.jpeg
(N)

T e

Support
delay

F | time

Support
interval

Event
rocessing
ead address

/\

image42.jpeg

image43.jpeg

image44.jpeg

image45.jpeg

image46.jpeg
L 4—o0—— o0 41

image47.jpeg
Loading|
start
address

File

g
e

s3nqraaze
3114

55349 30
Jaqumy

sbe13 uoTa
-edT3TaUSPT

image48.jpeg
umsyoayD

image49.jpeg

image50.jpeg

image6.jpeg

image51.jpeg
L

image52.jpeg
unsyoayy

Data (1 - 256 bytes)

so3&q
3o zaqumy

sbe13 uoT3
—eITITIUSPT

&)
m

(% 2)

image7.jpeg
!
Relation VRAH
2000
Character 0000
generator
Color
Block 1 table
2800
0800
Block 2
3000
1000
Block 3
Backdro 3800
® 1800
Display screen /—%

image8.jpeg
Multi-
color
pattern

”
”
”

&

Z,

it
X

Y

N
+1
+2
+3
+4
+5
+6
+7

N

color A |color B || N
4n TOWS
Cc D
B F
Mn+ 1 rows
G H
1 J
n+2 r
K L
M N]
fdn+ 3 rows
o P

Screen

Pattern 4 ()

PattemﬂN‘

Pattern
generator]|
table

8N

8N +7

image53.jpeg
Tone generator #1|

Attenuator
#1

Registers

Attenuator
Tone generator #2| #2
Attenuator
3
Tone generator #3| 3
Attenuator

Noise generator

#4

image54.jpeg
T 1
R:1 Rz RoI X | FB | NFy NFoI

T
R1 Rz Ro

1

1

0

Noise control

Noise
NF: NFo Frequency

0 0|N/5I2

0 1|N/1024

1 0 |N/2048

1 1| control
by tone
generator

#3

image55.jpeg
CTC #1

Software

counter

SML
interpreter

image56.jpeg
| Sound
1 | B (volume)

image57.jpeg
za
Vzzzz22222

|

S~ N Mm% w ©® ~ ©

image58.jpeg

image59.jpeg
— | 256

2/4/8

579545MHz

Shiftrate

Noise
Generator

Attenuation

image60.jpeg
Screen select switch

00

ACMT baud rate factor

21

image61.jpeg

image62.jpeg

image63.jpeg

image64.jpeg

image9.jpeg
, 6 dots e e S

8 dots

image65.jpeg

image66.jpeg
System flag

Data put/get pointer

Significant characters

ACMT buffer size

ACMT buffer

Head address

me

image67.jpeg

image68.jpeg

image69.jpeg

image70.jpeg
Function key management
flag

Function key

L
table head address H

/\

Function key

information table

Address of
information for]
function A
function B

One entry »

for each

function function C

key.

Function n

image71.jpeg
Counter

cHc>

‘3zoo

Terminator ('00)

image72.jpeg
Linkage table

(32 bytes)

Sprite #31

image73.jpeg
2

Y L

4 |sprite
to
instruct
Eha

image74.jpeg
SPIFTB

Sprite table
(60 bytes)

image10.jpeg
Display screen
select switch

——o
0

Page o
1

o S

CPU

Processing screen

select switch

image75.jpeg
|

image76.jpeg
L

SMNmE O

image77.jpeg
File Attribute

File name

Loading start
address

Data (program
size)

Program start
address

image78.jpeg

image79.jpeg
s[wla]

y [T=~] hestr

image80.jpeg
t)2]3]4]s]e]v]s]o]o] [-]¥]

ES SN SN S (SR FSN (SN OSSN K O

FUNC ['8C |86 | '8E 8’“}30 919293 (82(83|9C|9E| CR

CTRL |'8A |'88 |'89 |'88 |94 |'95 |'96 |'97 |80 | 5 |'on |'oF | sp

SHIFT |'8D '85 |'8F |98 ['oa |98 |99 |. |. [®

B4 1T

image81.jpeg
Lo [e]slse] [=[~T1
@nc %c |86 | 6 |E7 | 'F0 [1 |'F2 |3 B2 |'B3 [FC [FE| R

Lcm B (‘B8 | 'ec '8 ‘P4 ['F5 76 |F7 [E0 | + |'F ¥R | sp

image82.jpeg
Z 72 g
FUNC CR
CTRL LF B sp

SHIFT CR :SHIFT

image83.jpeg
FUNC CR

CTRL i I SP

T
SHIFT SHIFT
.

image84.jpeg
| msxosun

Data

$334q Jo
oquny |

bery uory
—BOTITIUSPT

- ums3osYy

Loading
start
address

@
~
e
[

name

a3nqragze
o114

59349 70
Zaquin

be13 uory
—-BOTITIUSPT

image85.jpeg

image86.jpeg

image87.jpeg
L

image88.jpeg
IRARE A =

[Tres..

- | | + 64th note
length

image89.jpeg

image90.jpeg

image91.jpeg
Attenuator
level

nOmaS

image92.jpeg

image93.jpeg

image94.jpeg
oS<ro)

image95.jpeg
0000

1000

1800

2000

3000

3800

3C00

4000

For GII mode

Color generator
table

mode.

Note)

L (6 KB)
Sprite character
H pattem table Note:
(2 kB) Color table of a screen
[For GIT mode | is not in the GII
Pattern generator
[table
(6 KB)
+ 380
- Pattern name
table
— 1 0
Pattem name (Page: 0)
table
(Page 0) 3800 Sprite attribute
table
Pattern name 3880 Character color
table table
(Page 1) 301
Pattern name
table
(Page 1)
3r00 Sprite attribute
! table
3180

4000

Character color
table

Note)

image96.jpeg

image97.jpeg

image98.jpeg

image11.jpeg
Hexadecimal
data

SO IO
SO IO

image1.jpeg
L SPRD

N

I NG MA

/

MONI TORHANDIL

I

TORHANDIL

I NGMANUA AL

HANDIL

T O

I NGMAN
I NGMANUALMON

UALMON I

I

NGMANUALMON
TORHANDIL

L

/

T ORHAND

T OR

/

GMANUALMON

ON

G

N
T ORH

/

TORHANDIL

I

MANUAL MON I

I NGMANUA

RHANDIL

T ORHA

/

ANUALMON

/

T ORHANDL

I

N

I NGMANUA

HANDIL

image2.jpeg
CREATIVE COMPUTER

image12.jpeg

