Creative Computer

2nd ED.

Easy BASIC for Science

Copyright © 1984 by SORD COMPUTER CORPORATION
All rights reserved. Printed in Japan.

No part of this publication may be reproduced, stored

in a retrieval system, or transmitted, in any form or

by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written

permission of SORD COMPUTER CORPORATION Japan.

Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Appendix

INTrOAUCTION cceiiieee e 2
11 Getting Started........c.eeveieiieiiieieeee e 2
1-2 BASIC-Fand other BASICS..........ccccoeiiiiieeiiieeenseee e 3
1 -3 BASIC-F Variable Types and Numerical

RePresSentatiVe.ooouieiiiii e 3
1-4 BASIC-F Operating Environment...............cccccvvveeeeeeiecnnnen. 3
1-5 BASIC-F Files and Disk System..........ccccccoeiiuiieenieeinnninnnn. 4
16 Using Disk Files........ccocoiviiiiiiiiiiiieeeiee e 5
1- 7 Using Peripherals...........cccooouiiiiiiiiiiii e 6

General DesCriptioN ... 8
2- 1 SCreen CONLIOL.....ccuiiiiiiiiieee ettt 8
2-2 Screen Buffers and Graphics Modes..........cccccoviiiiiiienennne 9
2-3 The M5 Keyboard..........cccueeiiiiiniiieiiee e 10
24 BAIliNG.eceiiiiie e 10
2-5 Graphics MOUES.ccueiiiiiiiiiieee e n
2-6 Programming Style........cccvveereeiiiiieree e u
2-7 Statement SYNAX......cceeeeviieiiiiiiiiiieieeeeeee e 13
2-8 SOUNG....eeiiiiiiii ittt e 13
2- 9 Use of Keyboard and Printer..........cccccceeeiiiiiiieenie e, 14

Basic COMMAaNAS.....cccoeiiiiie e 16
3- 1 FUNCLONS.....ciiii it 102

Applications SECtiON....cccccvei i 147
A 0= T g I o 1Y 1T o | T 148
4-2 Initial INVeSIMENt.........eviiiieeee e 150
4-3 Regular DEPOSILS........cccuvveeeieeiiiiiiieee e eesrie e e 152
4-4 Future Value of Regular Deposits (AnNUity)...........ccceee.nee 154
4-5 Remaining Balance onaLoan...........c............. 156
4-6 Prime FaCtOrS......cooiiiiiieee et 158
4-7 Long Number ArithmetiC..........ccueeeeeiiiiiiiiie e, 160
A Character COAES.........cooiiieiiiiiiiii e 164
B M5 COlOr COURS....ceiieviiieiiiiee ettt 167
C M5 Control COAES.......cooviiiiiiiiiee it 168
D M5 CRT Layout Sheets..........oocuiiiieiiiiiiieeeeeeieeeenn 171
E Keyboard COdEes.......ccovevieeiiiieee e 173
F Port Assignment Table............cooviieniiieiiee e 176
G MEMOIY MaAPS. .. . uueueuenenenenrneinieiereiererereeeeereererreererereeeees 177
H EIror COOES. ...ttt 180

Commands and Function INAeX.......cccocevveeiiiieieeieiiiee e 184

Preface

This manual will be read by individuals with a wide range of skills.
It is intended primarily for those who are familiar with computers
and have used a BASIC language before. We have nevertheless
tried to anticipate the needs of as many people as possible. At times
this manual will appear too simple and detailed and at others too
complex. Please bear with us when the manual doesn’t match your
personal expertise exactly. We hope that this manual will be helpful
and easy to use. Please feel free to send us your comments and
suggestions.

Parts one and two of this manual cover the basic capabilities of
the M5 and BASIC-F, such as screen functions, files, and arithmetic.
Part three contains individual explanations of each BASIC-F state-
ment, function, and system command, arranged alphabetically each
with a short example. The fourth section contains a set of useful ap-
plications programs which demonstrate the various features of the
M5.

Chapter 1 Introduction

1. Introduction

Welcome to SORD’s BASIC-F. In this section we will describe the
way to set up your M5 to run with BASIC-F. We will also give a brief
description of the overall difference between BASIC-G and BASIC-F.

1.1. Getting Started

If your M5 is not assembled and running look at the figure below.
Connect the various components as shown and power up your com-
puter! Make sure that the BASIC-F cartridge is properly inserted
before turning the power on.

Your M5 is now ready for use. The top left corner of your screen
should display:

BASIC-F
READY
L

If it does not display this message, turn the power off and check
all the connections between components in your system.

Chapter 1 Introduction

1.2. BASIC-F and other BASICS

BASIC-F is an enhancement of BASIC-I, which also contains
some of the important graphics features of BASIC-G. The most im-
portant difference is the inclusion of floating-point arithmetic. With
BASIC-F you can perform all kinds of mathematical calculations.

1.3. BASIC-F Variable Types and Numerical
Representation

BASIC-F has integer, real and string variable types. Constants
may also be expressed in hexadecimal. Integers are represented in-
ternally by sixteen bits in two’s complement form, giving a range of
-32768 to 32767. Floating-point numbers range from +8.6E-78
to £7.2E—T75.

Arithmetic follows this operator priority:

() comma
functions

exponent

sign

*,/

MOD

+>—

relational operators
logical operators

We recommend that programs enforce all operations with paren-
theses. This removes confusion, improves readability, and prevents
errors when programs are transported to and from other systems
where operator precedence may be different or unknown.

Thus, example A is recommended over B even though they are
arithmetically equivalent:

A X
B) X

@*C) + 4
2+C + 4

1.4. BASIC-F Operating Environment

BASIC-F has two operating environments: a program creation
/edit mode and a program execution mode. Programs are ex-
ecuted, in the operating mode, simply by typing RUN.

Chapter 1 Introduction

Programs written in BASIC-G can be transferred to BASIC-F by
using the LIST command to create a tape of the program listing. To
access the stored program, use the INT command, followed by
RETURN, then transfer the program with the OLD command. When
there are no reserved words in BASIC-F an error will occur and
tape read-out will end.

Once a program is transferred it can be run in both BASIC-G
and BASIC-F, and can be saved in any form. Note, however, that
language-dependent commands such as floating-point operations
and graphics will have to be modified after transfer.

1.5. BASIC-F Files and Disk System

BASIC-F can use data files to store and retrieve information. The
file system is similar to that found on larger SORD computers with
advanced operating systems, but, since the disks used are 3-1/2
inch media, the files are not interchangeable with these machines.

When you use SORD’s FD-5 Floppy Disk Drive Unit with the M5
and BASIC-F, you need a number of commands which are not strict-
ly speaking BASIC-F commands. These are not included in the list in
Section 2 of this manual, but are described in detail in the CF-5/S
Operating System Manual. A brief description is given below.

The disks are used to store both programs and data in units call-
ed files. A list of which files are on a disk is itself stored on the disk.
When you wish to see what files are stored on a disk you must re-
quest that this list be displayed on the screen of your M5. To do this
the command used is RUN” LIST. When you enter RUN” LIST the
M5 will request that you enter the unit number of the disk that you
wish listed. After you give the number, the list of names will be
displayed on the screen. You will also be shown how much space
on each disk is in use and how much remains. Along with each file
name some file attributes will be displayed, such as the file type,
and the file size.

Before a new disk can be used, the computer must prepare it.
This process is called disk initialization. The command to prepare a
new disk for use is RUN” INIT. RUN” INIT clears the disk of any ex-
isting material and creates an empty list to receive the names of
the files that you will place on the disk.

Since disks may be damaged by accident or by errors in your
programs, it is wise to copy disks so that you have extra copies. It
is also necessary to copy files for other reasons, and so BASIC-F
allows you to copy one disk to another. The command is RUN”
COPY.

1.6.

Chapter 1 Introduction

Each file that is stored on a disk has a name. It may be desirable
to change the name of a given file from time to time. A command
called RUN” RENAME is supplied to do this. When you enter this
command, you must supply the old name of the file and then the
new name. The computer will prompt you for each of these names
separately. Each name may be up to 9 letters long.

Each file also has several attributes. These attributes change
the way that the computer can use the files. These attributes are
represented by the letters A, P, R, and W. The command to change
attributes is RUN”CHATR. The attributes are fully explained in the
CF-5/S Manual.

To use any of these SEVEN commands, just type it as it has
been typed above. Then enter RETURN. The M5 will prompt you for
each input required to complete the command.

Using Disk Files

With the disk system it is possible to use the disk for storing data
as well as programs. The procedure is essentially the same as in-
putting from the keyboard and outputting to the display, but a few
descriptors are needed to specify the file. We will now describe
how to use data files from within a program.

Data files can be thought of as large arrays which are stored on
the disk instead of in memory as regular arrays. Instead of just
numbers or strings, each cell of a file can contain a block of infor-
mation, and each block can be different in form from others. Before
we can use a disk file, we must tell BASIC-F that we intend to do so.
This is similar to using the DIM statement for arrays. The command
to do this is OPEN, and it tells BASIC-F to open access to a file of a
given name. It also associates the file with a channel number.
Channel numbers are always used to refer to the file after it is
OPENed. This allows you to write programs without knowing what
the files are called, and it allows one program to process many
different files. The OPEN statement may be used with a variable
name for the file hame so that it can be changed at run time. The
channel numbers are 0 to 15 so up to 16 files may be accessed at
once. Channel O is usually used by the console. When processing
is complete, you must CLOSE the file with the CLOSE command.

To use OPEN with the screen display, keyboard, or printer, the
format is:

OPEN *“descriptor” as #channel no.

For outputting characters to a graphic display or printer see
elsewhere in this manual.

Chapter 1 Introduction

1.7.

To use OPEN with a cassette unit or floppy disk drive, the format
is:
I input
OPEN “descriptor” for J output as #channel no.
* append

‘Input’ is used when you want to read data from a file and ‘out-
put’ is used when you want to write data to a file. ‘Append’ is used
when you want to add data to an already existing file, but is only
applicable with the disk system.

To use OPEN with random files on disk, the format is:

OPEN *“descriptor” as #channel no. record record length
The format for the CLOSE statement is:
CLOSE #channel no.

Many channels can be closed at the same time by specifying their
numbers, separated by commas.

If CLOSE only is executed, all OPEN files will be CLOSED. Be
sure to CLOSE all files when you are finished using them. After
CLOSEing disk files perform a disk update.

When accessing a cell of an array, we use a special notation:
square brackets with an index number following the name of the ar-
ray. There is a special notation for files as well. To get the informa-
tion out of a file cell, we use the GET command. To put information
into a cell of a file we use the PUT command. Cells in a file are nor-
mally referred to as records. Each file in BASIC-F can have up to
65535 records.

Using Peripherals

Besides the floppy disk drive, you can access a variety of
peripherals using BASIC-F. The following table gives the standard
abbreviations for your peripherals.

Name Output Device Input Device
* CNS (Console) Character display Keyboard

GRP (Graphic) Graphic display

PRT (Printer) Character printer

PRI (Image) Image printer

CMT (Cassette) Audio cassette tape

FX (File) Floppy disk drive

Chapter 1 Introduction

To operate your cassette tape, printer, or display the procedure
is much the same as the procedure for using the disk drive as
outlined in the previous section. You use the OPEN and CLOSE
commands, and if appropriate to the peripheral, you can utilize
PRINT, INPUT, SAVE, OLD, CHAIN, and LIST.

In BASIC-F all data inputs and outputs are carried out at the level
of files. To operate the peripheral you need to use a special file
name called a descriptor. The form of the descriptor is as follows:

Device Name Device Number Drive Number: File Name

A drive number need only be used with a disk drive; device
number is significant only with the disk drive. Channels available
range from 0 to 15, but as it is usual for the console to use channel
0, in practice 1to 15 are available. File nhames must be no more
than 9 characters in length. Thus to use OPEN with your printer, for
example, the format is as follows:

Open “Descriptor” as #Channel Number

With a disk drive or cassette tape the option to add to your data
exists, so the format is a little different:

OPEN < file name> [for {input|outputlappend)] as # <CH>
[Record < record length>] {OR]|:)

The format for the PRINT command is as follows:
Print [# < channel number>] < expression>,... {CR|}

With disks or cassette tapes only files which have been OPENed in
the manner described above can be PRINTed. The format for the
INPUT command is as follows:

INPUT [< prompt> 1 # <channel number>]{,|) <variable> [,.]
(CRY)

You can LIST programs on the printer with the format:

List “PRT" Return

This format uses the characters integral to the printer; to print
out just like on the screen use:

List “PRIL:" Return

Chapter 2 General Description

2. General Description

In this section we will describe the special features of the M5.
The M5 has many special features which are different from other
computers. These include the M5'’s special graphics capabilities and
music and sound generation. Used together, these features allow
you to create advanced programs on the M5.

2.1. Screen Control

The M5 computer uses memory mapping for the display screen.
The computer display screen is represented by a complete block of
memory. When you type a character, the M5 places the character
in the video memory and the circuitry of the M5 places the image
on the screen, where you can see it. A powerful feature of the M5 is
that it has two such video memory buffers. This allows you to ‘type’
on two screens or to write to two different places. A simple command
will tell the M5 to change which of the two buffers will actually be
shown on the screen. When one is displayed the other video buffer is
preserved exactly. The computer can switch between the two
displays quickly without any screen flicker or noise.

This feature is extremely powerful and allows the development of e
very useful interaction environments. For instance, a program could,
when requested, display help information on a second screen allow-
ing a user to request help, receive it, and continue using the program,
all without disturbing the display of the original program!

Chapter 2 General Description

2.2. Screen Buffers and Graphics Modes

DISPLAY CONTROL

The M5’s two screen buffers are referred to as ‘screen 0’ and
‘screen 1'. When the computer is turned on, screen 0 is displayed.
At any time screen 0 may be displayed either by PRINTing a ‘con-
trol U’ or by typing it from the keyboard.

To change to the ‘other’ screen type PRINT CRTL-V. CTRL-V
always causes the screen to change. If the screen now displayed is
screen 0 then it will change to screen 1 If it is screen 1 then it will
change to screen 0.

WRITE CONTROL

On most computers with only one display screen, any text typed
from the keyboard will go directly to the screen. On the M5, text
entered from the keyboard can go to either of the screens. This can
result in some confusing situations, so be careful!

When the M5 is turned on, screen 0 is displayed, and all text is
displayed on that screen, like a normal computer. The M5 can be
instructed to put text on the hidden screen by PRINTing or typing
a CTRL-Z. CTRL-Z is the WRITE TO HIDDEN SCREEN command.
If screen O is visible, the text will go to screen 1 and if screen 1 is
visible the text will go to screen 0. The M5 maintains a cursor posi-
tion for each screen. If text is written alternately to one screen and
then the other and back again, it will be as if the text had been
entered separately on each screen.

The M5 also has the ability to flip screens and write control at the
same time. This allows the user to look at the hidden screen and
continue to type on the previous screen. For example, if the user is
typing on screen O but needs some information .from screen 1, the
user can display screen 1 but continue typing on screen 0. This is
done with CTRL-Y. Notice that this command is actually redundant,
the same effect being achieved with CTRL-V, CTRL-Z.

TABLE OF WRITE CONTROL COMMANDS
CODE DEC HEX effect

CTRL-Q 20 14 multicolor

CTRL-R 18 12 Gil

CTRL-S 19 13 Gl

CTRL-T 20 14 enter TEXT mode

CTRL-U 21 15 display screen 0

CTRL-V 22 16 display alternate screen

CRTL-Y 25 19 display alternate screen and
write to hidden screen

CTRL-Z 26 1A write to hidden screen

Chapter 2 General Description

2.3.

2.4,

The M5 Keyboard

The M5 has several features which make programming easier.
The keyboard has several control functions which save typing time.
The following table summarises these functions:

CTRL-C -shift screen down
CTRL-D -shift screen left
CTRL-E -shift screen up
CTRL-F -shift screen right
CTRL-H -delete previous character
CTRL-1 -tab

CTRL-J -move cursor down
CTRL-K -cursor home
CTRL-0 -exit insert mode
CTRL-P -enter insert mode
CTRL-X -clear to end of line
CTRL-up -move cursor up
CTRL-down -move cursor down
CTRL-left -move cursor left

CTRL-right -move cursor right
CTRL-reset -interrupt program execution
SHIFT-reset -stop program execution permanently

These functions can be utilized by typing them into the M5 from
the keyboard directly, or by a program using the PRINT statement.
When used in a PRINT statement, they must be enclosed in dou-
ble quotes as part of a string. Furthermore, you must indicate to
the M5 that you wish to use the control code but not execute it im-
mediately. This is done by typing ‘SHIFT-CTRL-letter,” all at once.
This tells the M5 that you wish the PRINT statement to use the cor-
rect code but that it should not be used now. When this is done, the
controlled character will be displayed in reverse video.

Editing

These commands are often useful when editing. Naturally, when
typing in programs, errors will occur. The M5 has several screen
editing functions which facilitate error correction. When an error is
discovered it is not necessary to retype the entire line. When the line
containing the error is displayed on the screen, the arrow keys can
be used to move the cursor directly to the position of the error. The
error can then be corrected right on the screen. When the correc-
tions have been made, entering a ‘CR’ will tell BASIC-F to enter the
new, corrected line into the program.

10

Chapter 2 General Description

The other control keys are also useful when editing. For instance,
CTRL-X will delete the characters all the way to the end of the line.
CTRL-N will move the cursor to the beginning of the next line.
CTRL-H will delete the character under the cursor, anywhere in the
line. CTRL-P will allow you to insert new characters into the line and
CTRL-0 will exit insert mode. At first these functions may seem con-
fusing and time consuming, but with practice they speed up program-
ming considerably. The screen also has cursor wrap around. This
means that if you move past the edge of the screen the cursor will
reappear on the opposite edge. This can save time if you have to
move the cursor a long distance.

2.5. Graphics Modes

Under BASIC-F some of the graphics capabilities of BASIC-G
have been retained. Graphics are facilitated through the inclusion
of several commands such as DRAW, PLOT, PAINT, and COLOR.
These are described in the command section of this manual. Here
we will only describe the characteristics of graphics in the M5.

The M5 implements graphics through the use of different screen
modes. Recall that the M5 has two screens. Each of these screens
can be set to different modes. Under BASIC-F there are four such
modes. Each screen mode has different properties which facilitate
different tasks.

In TEXT MODE (G1) the screen can display 24 lines of 40
characters at once. Each character is composed of 48 dots in a
6x8 font. TEXT MODE is set for either screen by PRINTing or typing
a CRTL-T.

An alternate screen mode is G2. Graphics cannot be displayed,
but more characters will fit on the screen. The M5 is in G1 mode
when first powered up.

mode font

Gl 8x8 32x24
Gil 8x8 32x24
Text 6x8 40|x24
Multi 8x8 32x24

2.6. Programming Style

BASIC-F includes features which can make your programs easier
to understand and debug. Programs in BASIC-F can be more clearly
written, easier to debug and more efficient. They can also be stylisti-
cally superior. Features include:

n

Chapter 2 General Description

-labels for branching
-indenting of code
-a REPEAT command

BASIC-F has the ability to indent lines of program text. In the
following example the inside of the loop is indented.

Labels can be attached to line numbers. This allows routines also
to be given mnemonic names. A mnemonic name relates a name to
the function of the routine itself. This allows a reader to see quickly
what a section of a program is supposed to do. Labels can be used
with GOTO, GOSUB, and RESTORE in BASIC-F.

BASIC-F has the ability to indent lines of program text. In the
following example the inside of the loop is indented.

Labels can be attached to line numbers. This allows routines also
to be given mnemonic names. A mnemonic name relates a hame to
the function of the routine itself. This allows a reader to see quickly
what a section of a program is supposed to do. Labels can be used
with GOTO, GOSUB, and RESTORE in BASIC-F.

Within REPEAT and FOR loops, code should be indented two or
three spaces to make programs more legible. This shows which in-
structions are within the scope of a given loop. For example:

This clearly shows which commands belong inside the loop and
where the loop ends. This is a great aid to debugging and under-
standing programs. For this reason, BASIC-F does not remove the
extra blanks as do some other BASICS.

The REPEAT command should be used whenever a counter is not
required for a loop. This reduces the number of variables used, and
thereby improves readability and saves both memory and memory
accesses. REPEAT loops are always executed at least once, since
the test for looping occurs at the end of the loop. Code should also
be indented in the REPEAT loop. For example:

100 repeat

110 9osub fGET INPUT
120 90osub "~PROCESS
130 until DQNEf="TRUE"

Chapter 2 General Description

Older BASICS allowed variables to have one letter and one num-
ber as names. Modern BASICS such as BASIC-F no longer have
this restriction. It is good programming practice to make your var-
iable names meaningful. Using mnemonics helps debugging and
understanding programs. In BASIC-F variables may have names
consisting of up to 32 alphanumeric characters. Of course, names
that are too long also increase the likelihood of typing and reading
errors, remember to keep a balance.

2.7. Statement Syntax

Each line of a BASIC-F program begins with a line number. These
line numbers range from 1to 32,767 Each line may contain several
BASIC statements separated by full colons, Each line may be up
to 252 characters in length.

After a line number any BASIC statement may occur. Also, after
a line number, but not a colon, a label should occur. The label must
begin with a dollar sign '$’, and no blanks should occur between
the line number and the label name. The label can then be used by
other BASIC commands to refer to the line number. When referring
to the label the dollar sign must be included.

A special statement, called a comment, may also appear on a
line. When a comment appears, no other BASIC statements should
occur after it on the line. A comment and anything after it is always
ignored by BASIC-F. A comment is indicated by the keyword REM,
an exclamation mark T, or an apostrophe

The syntax of all other statements and commands is explicitly
defined in this section of the manual.

2.8. Sound

The M5 has a SN sound generation chip. This gives the M5
the ability to produce sound effects. These functions can be per-
formed from BASIC-F for use in any program.

To produce sounds, the M5 contains three tone generators and
one noise generator. These can be used singly or in combination to
produce a wide variety of sounds. BASIC-F has one command to
control all four of these sound generators. The command is SG and
it has three parameters: the channel, the frequency and the volume
of the sound to be produced. The second parameter describes the
type of noise to be produced when accessing the noise generator.
The comand is as follows:

SG channel, frequency, volume

13

Chapter 2 General Description

2.9.

The sound channels are 0,1, and 2. The noise channel is number
3. The frequency value is specified as a value from 1to 1023. For
any given value the frequency is calculated as follows:

frequency = 111.86 (khz)/desired frequency
For example, a middle C on a piano is'261.6 (Hz). Thus:

code value = 111.86 (khz)/256
= 428

and:
SG 0,428, 15

will produce a pure middle C from your TV.

When the channel specified is 3, the noise generator is accessed.
The noise generator produces eight types of noise from 0 to 7.
When used in combination with channel 2, interesting sounds can
be produced.

See the command section for more information about SG.

Use of Keyboard and Printer

The printer port on the M5 can be used to connect several prin-
ters to your computer. With dot matrix printers, the M5 can print out
graphics images from the screen as well as text and program
listings.

Be sure to read the instructions with your printer before connec-
ting it to your M5. If you have problems contact your dealer.

The M5 connects to printers via a parallel port. This requires a
special cable for the connector on both the printer and the M5.

The printer is used for two main purposes: to print out program
listings and to produce ‘hard copy’ output of programs written on
the M5. Program listings are produced by the LIST command and
its variations. For further information on these commands see the
command section of this manual.

Two kinds of hard copy output can be produced by the M5. One
is standard text, such as found in letters and reports. The other
form of output is graphic images. Text is output directly to the
printer with variations of the PRINT command. See the command
section for further information.

14

Chapter 2 General Description

Graphics images are sent to the printer with the GCOPY com-
mand. Again, see the command section for further details. Graphics
images can only be printed on dot matrix printers.

15

Chapter 3 Basic Commands

3. Basic Commands

In this section we provide a list of all BASIC-F statements
and system commands arranged alphabetically. Each state-
ment has a small example shown in isolation; for more examples
see the section of applications programs.

The FORMAT part of the statement descriptions is read as
follows:

(CRI) means that the statement can be ended with either a
carriage return or a full colon and another statement.

[1] indicates that the component in braces is optional.
[,] indicates that the previous component is optionally
repeatable.

| either of two options can be used.
< > the word(s) inside the brackets refer(s) to a single
object.

16

$

FORMAT: $< label name> {CR |}
FUNCTION : Remark statement or label-name.

Comments: Up to 32 characters in length; the $ must be situated next
to the line number.

Example: 1 00 s30to $SU8

i0o0BSUS8

17

AUTO

FORMAT : AUTO [<first line number>] [,< increment > |
FUNCTION : AUTOmatic line numbering when writing a program.

Comments: When entering a program, AUTO will put a line number on
the screen after you complete each line. AUTO sometimes
conflicts with the natural progression of programming by
enforcing an artificial regime on the order in which code is
entered. The use of this command is a matter of personal

style.
Example: fluTo 10Q ?20
100 a=1
120 b=2
140 c=a+tb

160 Print c

BCOL

FORMAT : BCOL [< color code>] {CR
FUNCTION : Sets the background color of the screen.

Comments: The default color code is 0, no color. If the color code is
the same as that for characters (FCOL) then characters
will be invisible. See Appendix B for the color codes.

Example: 10’ BCOL TEST
28’
3y for 1=0 to 10
40 beol |
45 cls:Print cursor(15? 13) JlI
50 sleep 1
60 next |

70 bcol O

CALL

FORMAT:
FUNCTION :

Comments:

Example:

CALL < address> [,<AF registers>] [,<BC registers>]
[.<DE registers>] [,<HL registers>]

CALL transfers program control to a specific machine
address, after leaving the return address on the stack.

This command is used to call machine language routines.
These can be part of the M5 monitor, or written by the
user. When the machine routine executes a RET instruc-
tion, control is returned to the BASIC-F program. After the
return, the following registers are stored in the following
memory locations:

PSW : &7262
:&7263
:&7265
1&7264
1&7267
:&7266
:&7269
:&7268

rImoOw>»

Caution should be exercised with the use of CALL. Always
save your program to disk or tape before testing a program
with a CALL. Often the contents of the machine memory
will be altered and your program will no longer even LIST
properly. On the other hand, machine routines will run very
fast, often 300 to 1000 times faster than a BASIC routine
which performs the same function. Thus if speed is requir-
ed, the CALL function may be necessary. (Also it can set
the values to the registers; see the REG function.) You
should however refer to a machine language manual for
the proper use of this statement.

10 9o0osub $SE TRGU
20 call RDDRESS ?
30 end

40 $SETROUTI NE
50 fiDDR ESS =&0C97
60 BCREG=&0500
70 return

20

CHAIN

FORMAT : CHAIN [< file-name >] [, all] |CR
FUNCTION : Retrieves and executes a program stored on tape or disk.

Comments: A statement on the same line as a CHAIN command,
separated by a will never be executed. The variables
and values of the current program are lost. And by setting
[all], the variables and values will remain as is.

Example: 106 Print "Done"
110 rhain "PROG2"

21

CLEAR

FORMAT: CLEAR [<work field>] [, < last user field>] {CR

FUNCTION : Clears a portion of memory for use as a PAINT and
character buffer. Memory is freed in 256 byte blocks.
The second parameter sets the highest memory location
used by the program.

Comments: The top of the memory field is below the buffer, and
prevents the program from running into it as it uses
memory.

Example: 100 clear 512j&8FFF

22

CLIST

FORMAT :

FUNCTION :

Comments:

Example:

CLIST[< file name>] [, < line number 1>]
[, <line number 2>] {CR |}

Lists a program in upper case only.

This function is identical to LIST except that all lower case
letters are converted to capitals before printing.

1V 2 gt

28 fi$=inkey$

25 Print asci i CH$
39 until Pif=chr$<13)
cl ist

10 REPERT

20 A$=1 NKEVS$
25 PRINT ASCIlI <A$>
30 INTIL A$=CHR$< 13)

23

[

CLOSE

FORMAT : CLOSE [# < channel no.>] [CR
FUNCTION : Ends usage of user file.
Comments: If the channel number is omitted, all channels will stop.

Example: 190 oPen "PRT: 1 as#2
110 print#2 "'3o0o0d"
120 close#2
iy end

24

CLS

FORMAT: CLS [< initialize code>] {CR [:j
FUNCTION : Clears the screen.

Comments: The initialize code may specify the character code which
will fill the screen. This is normally a null.

Example: c1s
1i 0 print "This is the toP ot the

SCx" 801"

25

COLOR

FORMAT : COLOR < character-code >, < color-code>
FUNCTION : Sets up the character color in the Gl and Gil modes.

Comments: The higher-order four bits indicate the character color and
the lower-four bits designate the background color, or
color-code = character-color x 16+background-color
or
color-code = & HL (H = character-color, L= back-
ground-color: H, L are hexadecimal)

* The Gl mode—each time a character is colored, it ac-
tually affects seven other characters with contiguous
ASCII codes (If the 16x16 ASCII table is split into upper
and lower halves, each half contains columns of eight
characters. These eight are colored identically).

« The Gil mode— each character is colored individually.

Example: color 63?7 &y0

26

CONSOLE

FORMAT: CONSOLE [<A>] [,][, <C>][, <D>][, <E>]
[<F>][<G>]{OR []

FUNCTION : Enables/Disables keyboard function keys.

Comments:

Function 0 1
A Keyboard
sounds OFF ON
B Generate key-

FF

board keywords © ON
C Display page page O page 1
D Process page page O page 1

E Display mode 0 : M, 1:G2,2:G1,3:T
F Screen lock

G ACMT Baud

rate B = 2,000 Baud

Example : console 8,, 9,9,3

27

CONT

FORMAT: CONT {OR

FUNCTION : Restarts a program after it has been interrupted by a STOP
command or a keyboard interrupt.

Comments: CONTinue will not work after an END command has been
executed. By entering STOP commands while testing a
new program, the programmer may check individual
sections of a program for errors.

Example: 100 print "Here we are?..."
110 stoP_
120 Print "Here we 907?..."
130 end
run

Here we ere?rnni
StoP at 110
Ready

cont

Here we 90 ?e e
Ready

28

CURSOR

FORMAT : CURSOR (X, Y)
FUNCTION : Moves the cursor to the coordinates specified by (X,Y).
Comments: A semicolonis usually used after this keyword.

Example: 108 Prini cursor (15? 10} ; 1GQME Of

29

DATA

FORMAT: DATA < constant > (CR [:j

FUNCTION : Stores constant information to be used by the program and
accessed via READ.

Comments: Data may be numerical of any type, or character data. Col-
lect DATA statements near the end of the program. When
using disk systems keep DATA use to a minimum as they
occupy valuable memory. Instead keep the information on
a file.

Example: 10 els
20 -For 1=0 to 7
30 read
40 print RS,
50 next |
100 data 12,24,1955,Smith
110 data 3,7,1942,Jones

30

DEL

FORMAT:

FUNCTION :
Comments:

Example:

DEL [< line number 1>][,< line number 2>1 (CR |}

DELetes a line or lines from the current program in
memory.

Be careful when entering two line numbers not to delete
entire blocks of code from a program.

rom ft8 CDE
rem tohiyg

100

118

120 rem klmno
138 rem P rst
140 vem NUWXV z

ROady
del 110,130

ROady

list

ioorOm ft8CDE
140rem UULJIXV z

ROady

31

DIM

FORMAT:
FUNCTION :

Comments:

Example:

DIM < array name> (<array size>[,...]) [,...] {CR |}

DIM allocates memory for an array.

A DIM must be executed before an array is used. Each
DIM statement must only be executed once. It is not legal
to change the DIMensions of an array after it has been
declared. An array can use up a large amount of memory,
so care should be taken to allocate only as much as is
needed. (Max. 255 dimension is possible, it does not in-
elude o dimension)

ioo dim O<5> 2 5
110 o F=L tO 5

120 ft<l>=1+64

130 0$<I)=chr $<fi(1)
140 next |

150 tor J=1to 5

160 Print 0<J>7f1$(J
170 next

188 end

run

65 0

66 g

67 c

68 D

69 E

DRAW

FORMAT : DRAW <GR-coordinates>[,<GR-coordinates>] {CR |}

FUNCTION : DRAWS a line on the screen.

Comments : If only one pair of coordinates are given then the line will
be drawn from the current graphics-cursor position, and
the graphics-cursor becomes the end of the line. If two
pairs of coordinates are given they specify a line and
the graphics-cursor does not change position.

E le: HAH i " u in i
xample 10 S;A\r,lvt 1HW?’\§VO,S?6Q),”10

29 amome 507100

30 draw i90?15®©

40 draw 2007?13011007?0
50 Print -»w

33

END

FORMAT: END [CR [}
FUNCTION : Indicates the end of a program and halts execution.

Comments: Once the END instruction is executed, execution cannot
be resumed with CONT. This instruction is not strictly
necessary. (All of the channel will be closed)

Example: 1 800 Print "This is a uery short
Pro3ram"
i010 and
run
This is a very short Pro9ram
Ready

34

EVENT

FORMAT : EVENT < interrupt-interval > [, < delay-time>] {CR |}

FUNCTION : Sets the interrupt interval accessed by the ON EVENT
GOSUB statement.

Comments : The interrupt-interval is the interval between consecutive
event timer interrupts that can take on values between 0
and 255 (number of 1/60 second units). Be careful since
0 is assumed to be 256 time units. The delay-time is the
delay time until the first event timer interrupt and can take
on values from 0 to 32767 (1/60 second units). 0 is assum-
ed to be 32768. Unless otherwise specified, the first event
timer interrupt occurs immediately after setting the event
timer interrupt-interval. If negative values are specified,
the event timer will stop.

Example: 10 els
20 event 60>60
30 on event 9osub $EU
40 event on
50 1=0:C=0
60 1=1+1
70 Print cursor (15?3) ; Ll ="721;
80 goto 60
90 $EU
100 C=C+1
110 Print cursor(15? 13) "C="JC5H
120 return

35

EVENT (ON/OFF;

EVENT (ON/OFF) (OR |3}

FORMAT :

FUNCTION :

Comments:

Example:

Enables/Disables event timer interrupt.

<ON/OFF>
ON = Allows calling of subroutine by an event timer inter-

rupt set up by an ON EVENT GOSUB.. statement

OFF = Disables event timer interrupts

o —— ———
Lo A ¢N —O

NR — —
O ©
COO0OO0O0O0O0O0O0O0OOO

N N N
=N
oo

N\F'N
[op 62 BN
O OO

M0nso 101jy,0?2

C i

OyOnt 607?60

On OMOnt 90suh $SUB
oMont oOn

H=03]J=0

t D
rOPOat
H =H+1
Print cursOr C10?10>“1H
ns =ink0y$
unti 1 H$<>*1
Ond
s Fus
1=141] .
Print cursor (1R, &Jyail__ KaT
rofurn

36

FCOL

FORMAT:

FUNCTION :
Comments:

Example:

FCOL [< color code >] {CR

In Text Mode, sets the color of the characters.
In G2 mode or Multi-color mode, sets the color of the

graphics display.

The default value for the color code is 14, grey. If the back-
ground color (BCOL) matches FCOL then characters will be

invisible. See Appendix B for color codes.

10J FCOL TEST

20 tor 1=8 to 14
30 fcol |
40 sleep 1

50 next |

37

FOR..TOJSTEP]

FORMAT:

FUNCTION :

Comments:

Example:

FOR < control variable> = < initial value> TO < final
value> [STEP < step value>] {CR [ij

FOR NEXT loops are used to perform many iterations of a
section of the program. The control variable is set to the
initial value and control transfers to the next statement.
When a NEXT statement is reached with the same control
variable then the control variable is incremented by the
step value. When the control variable reaches or exceeds
the final value then control is transferred to the statement
immediately after the NEXT statement. Otherwise the
statements between the FOR and the NEXT are executed
once more.

The number of times that the program will iterate the com-
mands in the loop is calculated as:

iterations = (final value-initial value)/step value

If the step value is not specified then it is given the default
value of 1. The control variable should not be altered by
the instructions in the loop. This is very dangerous and is
poor programming style. When several loops occur one
within the other they can take a long time to execute. Care
should be taken to realize this when writing programs. Pro-
grams may contain complete loops within other loops but
they may not overlap. Thus for each FOR statement en-
countered a NEXT must occur in the reverse sequence.

100 cls

110 tor 1= tm 27 ¥t QP
120 or J=1 to 9
130 locate 12J
140 Print rights
150 noxt J

160 next i

170 Print

180 Ond

Note the use of indentation for readability.

38

GCOPY

FORMAT :

FUNCTION :

Comments :

Example:

GCOPY [< format type>] {CR |}

Prints the current screen image on the printer.

The default format type is 0. Formats are defined as follows?

0 40 character image format

1 = 80 character image format

Before this command is executed, it is necessary to issue
the GMODE command.

1MH?9copy TESI
110 Print "°

120 9in it

130 9mods 4

10 ERASE

150 tCO1 &00 O0h

160 GV1=30; GV2=5:H=0

170 Plot 22870

180 tor TH=0 to 6+180 stO0 vy
190 H=H+1

280 X=co0s<80-H/2 6 TH>

210 GV=GVi+1

220 GX=128+X

238 GV2=GV2+1

240 draw GX?GV1

250 9fioMo 128, GV1

260 draw 6X7GV1

270 next TH

280 Print#2

290

308 9mod0 0O

320 tor G=0 to 1

330 Printil?2cursor<1?21>"i1GCPVH*G"
340 9copy G

358 Print#2 "

360 noxt G

370 Print »"'3

380 Ond

39

GET

FORMAT:

FUNCTION :

Comments:

Example:

GET [# <CH>][[,]< variable> [,..]] |CR |}

Reads data from a designated channel to a designated
variable.

It is desirable that data obtained with GET be data created
with PUT. With character variables it is necessary to use
LEN before GET to control the size of the variable.

get #3 CODE™, NfiMEf »TELS$

40

GINIT

FORMAT: GINIT[CR |}

FUNCTION : Enter the graphics mode (applicable to the multicolor and
Gil modes). The specified screen-clear-specifier is used for
graphics (default is 255).

Comments: <screen-clear-request>
0 = display character, font clear colors, graphics
cursor and initialize graphics mode
display characters
font clear

1
2

In the multi-color mode, values greater than 1 clear the
font and display characters.

If the screen is not cleared, go ahead and arrange
characters on the displayed screen.

Example: Q0 Print Hj s 3init
11 cOnpo1 d %%
F oGP RERY: 1 G 180
28 ainit
58 t(r:gl §T191 55,0
FRIEE ! ’

41

GMODE

FORMAT :

FUNCTION :

Comments :

GMODE [<mode 1>] [, cmode 2>] [CR |)

Sets up the graphics display mode.

Affects the PLOT, DRAW, and PAINT statements. It takes
the color or pixel already on the screen and the newly
specified color or pixel, and then applies one of the func-
tions below to decide the resulting color or pixel, e.g. a
boolean operation on the specified color code of a pixel
ORed with the existing color code of that pixel yields the
new pixel condition in GMODE 1

<mode 1> -
Color
replace
OR
AND
old display

W N O

Pixel

replace
AND

XOR

old display

~NOo oA~

The following relationship holds for the “GRP” device.

< mode 1>
Color
replace
OR
AND
old display

WN RO

Image

OR

AND

XOR

Old display

~Noyor &~

When you specify “1” in mode 2, only the image will be
processed.

42

Example

100
110
t20
130
fao0
i50

170
180
490
YOO
“10

ons 0107?7010 i

ginlt

tcol 3

draw 100103i00, 100:0, 100
paint 50250

tcol 7 _

draw 5570%55j50;0,50*0j0
gmode 1

ic0l Y ,
raint 257 On
print chFsl 6>
Ond

T

43

GMOVE

FORMAT : GMOVE <GR-coordinates> {CR |}
FUNCTION : Moves the graphics cursor to the desired coordinates.

Comments: No line is drawn with this command; it is only used to
position the graphics cursor.

Example: X 0 wii (] ioiyi X
110 9init
120 tcol B
130 draw 100,0 ;100,100;0,100:;0:
140 fcol 15
15-0 9moLs 200, 100
169 draw 100|0'1 00 100j0j100"0:
170 Print chr %2 6)
180 end

44

GOSUB

FORMAT:

FUNCTION :

Comments :

Example:

GOSUB < destination [CR [

Transfers control to a subroutine so that control will be
returned BACK to the point IMMEDIATELY AFTER the

GOSUB.

Use the RETURN statement to transfer control back to

the point where the subroutine was called. Notice that this

allows the subroutine to be used from many places in the

program. GOSUB should be used in place of GOTO when-
ever possible. The BASIC GOSUB has recursive cabability:
that is, a subroutine may GOSUB to itself, but as BASIC has
no parameter passing abilities, all variables must be manag-

ed by the programmer. Destination = (line nhumber |label

name|numeric variable (line number)|string variable (label

name)}

10 Print tiveHr
.0 90sub $ TcHR
40 903ub $oP.SET
40 Ond

100 $bTcHR

110 Stchr 700133c66 b2?e2400"

170 rOturn

00 ssp. bET

710 scod 0?&7F: CO1 0,5
w 0 10C 0 to 123796

9 0 rOturn

45

&7F ?0

GOTO

FORMAT : GOTO < destination> {CR |.J

FUNCTION : GOTO transfers program control from the current line to
the line number or label in the statement.

Comments : GOTO statements should be used as little as possible. Al-
though this is difficult in BASIC their use can be limited. To
make programs clear, write programs in blocks, with little
use of GOTO within blocks. A statement appearing after a
GOTO on the same line (with a : separator) will never be
executed. Destination = {line number | label name |
numeric variable (line number) | string variable (label
name)}

Example: 100 fi=100
110 90t0 1000
120 8=PI+5
130 90to $DISP

1000 B=H 5

1010 8D ISP

1020 Print "a = ":PlI;" b =
1030 end

46

IF. THEN..ELSE

FORMAT :

FUNCTION :

Comments:

Example:

IF < conditional expression> THEN < statement>

[ELSE < statement> [...]] [CR |}

Evaluates the conditional expression. If it is true (the condi-
tion is satisfied) then the statements(s) after the THEN are
executed. If it is false (the condition is not satisfied) then
the statements after the ELSE are executed.

If there is no ELSE part and the condition is not satisfied
then the statement has no effect. Conditional expressions

are : = < > % > <

3

190 inPut "10 + ji5=2"; fl
110 ii ft=25 then Print "9oo0d"
elso Print "a9ain":goto 109

120 end

47

INPUT

FORMAT :

FUNCTION :

Comments :

Examplet

INPUT [<prompt> |# <channel number>] (, |3
<variable > [,..{CRJ:j

INPUT accepts alphanumeric data from the keyboard and
assigns their values to variables.

The INPUT statement will place a question mark on the
screen if the program does not include the < prompt>
field. If multiple inputs are to be entered at one time then
the variable names should be separated with commas.
When multiple entries are to be made by the user running
the program, then the inputs must be separated by com-
mas. This format results in a problem inherent in BASIC:
when the user is requested to input a string of alphabetic
characters into a string variable, the string should not con-
tain any commas. The only way to overcome this short-
coming is to write input routines using the INKEY function.
For programs to be used by inexperienced users this may'
be preferable to INPUT, as ‘bomb-proof input routines can
be created. A ‘bomb-proof input routine cannot cause a
BASIC error, no matter what the user types in. With the
INPUT statement, if the user enters the wrong number of
parameters, or enters a comma in a string, BASIC will print
an error message. These may not be understood by inex-
perienced users.

100 inPut "llhat is yOur a30?";AG=
110 inPut "Uhat is yOur nam0?"; N
120 Print fIQE; "is a 300d a=30 "; N
130 Ond

run
What is your ado ? 4

What is your name ? Rona 1d
4 is 900od a9o0 Ron ald

Ready

48

KILL

FORMAT: KILL <file name> {CR |}
FUNCTION : Deletes specified files.
Comments: Effective only with an external disk drive.

Example: kill "FXfl0:0 LDDATR™

49

LEN

FORMAT: LEN < character string length > {CR [
FUNCTION : Resets the maximum length of string variables.

Comments: The default value for string lengths is 18 characters. LEN
can be used to set the value from 1to 255.

Example: 100 i ' ="abcdet9hiJk1lmnoP9rstu"
110 Print- T
run
Err 15 in 100
Ready
100 1lan 24 ' s="abcdet 9hiJk 1moP¢
110 Print S
run

abcdet 9hiJki1mnoP9rstu
Ready

50

LET

FORMAT:
FUNCTION :

Comments:

Example:

[LET] <variable >[,< variable >] [,.......]= < expression >
(CR [}

LET assigns the result of an expression to a variable. This
result may then be referenced in other expressions.

The word LET is optional. A variable name may be followed
by the assignment operator ‘="' and an expression. LET
itself is a vestigial command.

100 let fi=5
110 B=6
120 Print A>B

51

LIST

FORMAT:
FUNCTION :

Comments:

Example:

LIST [< descriptor> | <file name>] [< line number-1 >]
[, < line number2>] {CR |}

Lists a file or portion of a file to another file, the printer, or
on the screen.

The LIST command can be used instead of the SAVE com-
mand to store files. When a file that was LISTed to disk or
tape is subsequently read, the program in memory will not
be erased, unlike a file that was SAVEd. However if the
program being read has any line numbers identical to the
memory program these lines will be replaced with the new
lines. To distinguish these files from normal files, they are
called “listing files.”

list

100 fl=1:B=2
110 Print fl
12S Print 8

Ready

52

LOC

FORMAT:
FUNCTION :

Comments:

Example:

LOC < sprite-number> TO <GR-coordinates> {OR |}

Moves sprite-number to the specified GR-coordinates.

Sprite-numbers are 0 to 31, 0 has highest priority. The
highest priority number at that location will be displayed.

10" LOC TEST

20 Print "LIMB"

30 stchr "00133c66db7e2480"
40 scod 0, &7F:scol 07?4

50 1for 1=0 to 255

60 loC 0 to 1,90

70 next |

53

LOCATE

FORMAT: LOCATE <column>, <line> {CR |}

FUNCTION : Moves the cursor to the specified line and column on the
screen.

Comments : This statement is identical to CURSOR (X,Y) except that
because CURSOR is a function, it can be used in a PRINT
statement and LOCATE cannot. The screen uses a 0 origin
coordinate system. The legal range of each coordinate
depends on the screen mode in use.

Example : lo8 locate 9.11
110 Print, "Bollom corner

54

MAG

FORMAT :
FUNCTION :

Comments :

Example:

MAGO

MAG 1

MAG 2

MAG 3

MAG [< sprite-modifier >] {CR |}

Change the sprite size and format.

< sprite-modifier >

0 = 8x8 dot matrix
1 8x 8 dot matrix (by 2)
2 = 16x 16 dot matrix
3 = 16x 16 dot matrix (by 2)
ilo Print
i20 stchr "00183c66db7e2400"
139 SCO0ij 0J&T7F
140 SCO] 0,4
150 ma9 1
16 10C 0 t0 100,100
170 end
Example of display Character Enlarged Notes
for ‘A’, or & 41 dot matrix dot matrix
« Default mode
8x8 when power is
N dots 8x8 dots first supplied
« Sharp picture
16x16 16x 16 dots One large picture
dots can be created
16x16 16x 16 dots by combining
dots four smaller
pictures
* Hazy picture
8x8 16x16 1lLarge sprite can
a dots dots be easily created
by combining
H C four characters
1Sharp picture
16x16 32x 32 dots One large picture
dots can be created
by combining
four smaller
pictures
Hazy picture
n*

55

to &7Fj0

NEW

FORMAT:
FUNCTION :

Comments:

Example:

NEW (CR

Clears the current program and memory contents.

This command prepares the M5 for beginning a new
program. MAKE SURE that the current program has been
saved on disk or tape before issuing a NEW command.

10rem Pro9ram 1
20 dim R<100}
30 90osub $INIT

Ready
new

Raady
list

Ready

56

NEXT

FORMAT : NEXT [< control variable >] (OR

FUNCTION : NEXT ends a section of a program started by a FOR
statement which is to be executed repeatedly. The control
variable indicates which FOR statement this NEXT matches.

Comments: NEXT should always be used with explicit control variables
as leaving them out makes the program very confusing. All
FOR NEXT loops should be indented two or three spaces
to show the extent of each loop graphically. Further, each
loop should be a maximum of one screen or one page in
length. Longer loops should call subroutines.

Example: 100 tor 1=0 to 21 step 3
iy Vint i
t20 next |

57

OLD

FORMAT: OLD [<file-name>] (CR [ij
FUNCTION : Reads a file from external storage.

Comments: When the file-name is omitted, the first file found is read
into memory.

Example: old "CMTiPROG 1"

58

ON ERROR GOSUB..

FORMAT : ON ERROR GOSUB < destination {OR |}

FUNCTION : Transfers control to the line number when any BASIC-F
error is detected during program execution.

Comments : This command allows the program to continue to run
when an error occurs. The routine should display an error
message which will explain the error that the user made.
The program should then allow the user to correct the
mistake. This will only work with run time errors, not
program syntax errors. Destination = {line number | label
name | numeric variable (line number) | string variable
(label name)}

Example: 10 on error <€o ub $ERR
inPut "I NPUT NUMBER" *fi
% Print #
40 $ERR

50 it Orr=25 then resume 20

59

ON EVENT GOSUB

FORMAT :

FUNCTION :

Comments :

Example "

ON EVENT GOSUB < destination (CR |}

Calls subroutine beginning at line number when event timer
interrupts— interrupt priority 2. (The event timer is initializ-
ed with the EVENT statement.)

Destination = {line number |label name | numeric variable
(line number)| string variable (label name)}

iyo $uontt So? vy

1 10 on .oyent 9o0osub EU
1 20 omont on

130 9o0to 130

140’

150 EU
160 Print chr$<7);

170 rolurn

60

ON.. GOSUB-

FORMAT: ON <expression> GOSUB < destination {CR [ij

FUNCTION : This is a multiway branch instruction. After evaluating ‘ex-
pression, branches to the nth line number in the line
number list. On executing a RETURN, returns to the next
statement after this ‘ON GOSUB.’

Comments: This type of instruction is also known as a CASE or SELECT
statement. It allows one of many options to take place from
one point in the program. Be sure that the range of results
for the expression is limited to the number of line numbers
in the line number list. It is suggested that labels be used
for all line numbers. Destination = {line humber | label
name | numeric variable (line number) | string variable
(label name))

Example: ilW in Put "Enter the command numfaer
<l1-5>Mc i
in ij Bosufl $CoHI,fCoM?$COM

i 000 $CoM1

2 000 $Cow

3 000 $ComB

61

ON. GOTO.

FORMAT:

FUNCTION :

Comments:

Example:

ON <expression> GOTO destination> [CR |}

This is a multiway branch instruction. After evaluating the
expression, branch to the nth line number in the line
number list.

For using subroutines the ON GOSUB statement will be
more convenient. Destination = [line number | label name
| numeric variable (line number) | string variable (label
name)}

190 inPut "No, <1 3> 2 " ; CPISE*

110 it OftSE<l oF CRSE>3 then oto 18
120 on CASE oo $WHEN 17 $ WH
1008 $HEN

2 888s jHENS

3 088 $WHh N3

62

ON.. RESTORE.

FORMAT: ON <expression> RESTORE <destination> {OR |}

FUNCTION : Sets the data pointer to one of several data groups depen-
ding on expression. After evaluating the expression sets
the data pointer to the data statements after the nth line
number in the line number list.

Comments: Use labels instead of line numbers for each of the data
groups. See the DATA and RESTORE statements. The
expression must result in a number less than or equal to
the number of labels in the line number list. Destination =
(line number | label nhame |numeric variable (line number)
| string variable (label name)}

Example: 100 inPNt "what character 9rouP
110 ii T % or T>2 then Bolo 180
20 gn I_rostor. $S?$L

i30 tor '~% to 5
i40 Ndad

50 Print H$5
160 next

*70 end

1g0s*

l9o data a?b?c?d?0
00s L

Vio data h?8,C?D,E

63

OPEN

FORMAT :

FUNCTION :

Comments :

Example:

OPEN <file name> [for [input | output | append)] as#
<CH> [Record < record length>]{CR [}

Opens user files, for further usage.

File names must have no more than 9 characters.

Input is used in conjunction with the INPUT # command, and is
reading data from a file. Output is used in conjuction with the PRIN
#command, and is for writing data to a file.

Append is used like output, but only when you are adding data tc
already existing file.

100 oPONn "PRT
il0 Print#2
120 c10s0#2
130 end

PAINT

FORMAT : PAINT <GR-coordinates> [, < boundary-color> [,..]]
ICR |3}

FUNCTION : Paints an area delimited by the GR-coordinates using one
of up to 16 colors indicated by boundary-color.

Comments: Even if the boundary-color is omitted, the appropriate area
will not be colored transparent (invisible).

so:e?,0?071

. l)OO
Example: 10 1 C:JL%

120 ginit

1 for 1=1 to 10

ii40 X =rnd<230">

I50 VX-rnd<180*>

160 ijXX=rnd (50 10 7.

170 ijv — Bd<508>+18

30 COL™=rnd<i3¥>+2y

90 tC01 coL

Z00 gmoye Vigod

Z10 oraw MU9+ijx YAV %" x +uxy7vW+yvre;
{ ?'i”/+i.ij“r 3y V¥

Z20 tC01 rnd<13y +2V

Z30 Paint VVY+yxV/ 2y - yL+yvy/ 2

Z40 next i

Z50 consol e?7 7|

65

, COL)

PLOT

FORMAT : PLOT <GR-coordinates> [;,] [CR |}

FUNCTION : Displays the dot associated with the coordinates. Use the
color set up by a FCOL statement.

Comments : After execution, the graphics cursor will reside at these
coordinates.

Example ¢ iyy
110
120
138
150
160
130
190

cnnsole.” ?2y?y?1
C1S
9init
or '"Il=1 to 300

fco1 rnd<13)€)+2

Plot rnd<255X>»rnd<191X>
next |
con so lej??1

66

POKE

FORMAT : POKE < memory address> [<data> [,...]] [CR

FUNCTION : POKE writes data directly into specified locations in the
computer memory.

Comments: The data may also be an expression to be evaluated before
the rest of the statement. Care should be taken with me-
mory addresses and data contents. Certain locations will
destroy the current program in memory. Programs written
for other computers will not work on the M5 if they have
POKE (or PEEK) statements without special modifications
to these statements.

Example: 100 Poke &F800 SFE

67

POKEW

FORMAT : POKEW < memory-address> [, <data> {CR

FUNCTION : Writes the data to the specified memory address in CPU
memory.

Comments: The data must be numeric. The lower-order byte is written
in the specified address while the upper-order byte is
written in address+1.

Example: 100 c’s
110 B =&FFFF
120 PX=yar P tr<8X)
130 pokew n ,&1000
14y p*in t hexT*y |
150 end

68

PRINT

FORMAT :

FUNCTION :

Comments:

Example:

PRINT [# <channel number>] < expression>,... {CR

Puts text in the screen display buffers.

PRINT is also used to send control characters which may
not appear as characters but which have important effects
on the screen buffers. Most characters sent by PRINT to
the screen buffers are merely deposited and appear on the
screen. Control .characters, on the other hand, may clear
the contents of a buffer, change which buffer will be
displayed on the screen, erase a character from the buffer,
or cause future PRINT commands to send characters to
one or the other buffer. It is important to realize that the
PRINT command can put characters into the buffer that is
not currently visible.

188 Print "Good day,eh?"

run
jood day ahy

Ready

69

PUT

FORMAT: PUT [# <CH>][[,] < expression> [,..]] {CR |3}
FUNCTION : Assigns a binary form to the value of an expression and
outputs it.

Comments: Binary form is integral in BASIC; the chief purpose of this
command is to create records of fixed length. It ensures
that when output, characters will be of constant length.

Example: put #3 CODE NiM E

70

RANDOMIZE

FORMAT : RANDOMIZE [CR |3}

FUNCTION : Resets the seed for the random number generator.
Comments : This affects RND

Example: 10 randOmize
20 ior 1=0 t
30 R=rnd<1>
40 Print R
50 nOxt 1|
60 Ond

71

READ

FORMAT :
FUNCTION :

Comments :

Example:

READ < variable list> {CR [ij
READ loads data from DATA statements into variables.

When a READ statement is issued, the variable gets the
value of the data item at the current value of the data
pointer. The data pointer is maintained by BASIC-F. When
you type RUN the data pointer is set to the first data item
in the first DATA statement wherever it appears in your
program. After the first READ you must exercise care in
using READSs, to ensure that you are aware of the position
of the data pointer. When modifying the program always
ensure that the order of the DATA statements is preserved.
Use the RESTORE command with labels, to ensure correct
positioning of the data pointer.

200 JOQhn

RECORD

FORMAT : RECORD # <CH>][,] < Record number> {OR

FUNCTION : Specifies the record to be accessed next, and the execu-
tion order of reading and writing.

A record is a collection of files of uniform length. The

Comments:
record number may range from 0 to 65535, and the length is
specified by OPEN. Random access is available. Normal execution
order is write then read.

Example: record#3jCD

73

REM

FORMAT:
FUNCTION :

Comments:

Example:

{rem |!|'} < comments>
Stores programmer comments within the program

REM is short for ‘remark’. Remarks are not executed by
the computer. It is recommended that remarks be placed
liberally throughout all programs to help when debugging
programs. Unfortunately REM statements can use up a lot
of memory. A trade-off must be made between readability
and ease of modification and debugging. No statements
may occur after a REM in BASIC-F. This is unlike most
other BASICS.

100 rem This Pro9ram was written
Mar K Uoumard

110

120 'the -foil owin9 section initia
the main variables

130 "and opens files

74

RENUM

FORMAT : RENUM [<new line number>][, <old line number>][,
<step>]

FUNCTION : Changes the line numbering of the program. Maintains all
GOTO and GOSUB commands.

Comments : As a program grows in size, more lines of code may
need to be added than was anticipated. If room runs out,
RENUM can be used to create more space and even out
the line numbering.

txampie: 100 fi,B,C=1
113 for 1=1 to 10
126 fl = fi+ 1
139 B=B-1
152 C=C* |

165 next 1
178 Print fi?B, C

191 end

Read y

renum 1000, 100,20
list

1000 #,B,C=1

1020 for 1=1 to 100
1040 fi=h+1
1060 B=B-1
1080 c=C=*1
1110 next 1

1120 Print *,B,C
1140 end

Read y

REPEAT

FORMAT :

FUNCTION :

Comments :

Example:

REPEAT [CR |3}

Sets up a loop with a logical test at the end. The end of
the loop is specified with an UNTIL.

The loop is used much like a FOR NEXT loop where no
counter is required. A REPEAT loop is always executed at
least once! The test to end the loop is in the UNTIL state-
ment at the END of the loop. When a REPEAT instruction
is encountered, BASIC-F marks the line and continues
execution of the next and succeeding statements. When
an UNTIL statement is encountered, the logical test is
evaluated (see UNTIL). If it is true the last REPEAT mark
is removed and execution continues on the line following
the UNTIL. If it is false, execution continues on the line
following the last marked REPEAT statement.

100 g=0°

110 rePe.31

120 fi=ft+1
130 Print M

140 until fl=
150 end

76

RESTORE

FORMAT:

FUNCTION :

Comments:

Example:

RESTORE [< destination >] (CR

Resets the data pointer for a group of data items in DATA
statements.

This function is convenient when you need to extract several
categories of information from the same group of data.
Destination = {line number | label name | numeric variable
(line number) | String variable (label name)}

188 r 8Store PRTAi2
118 tor 1=1 to 5

1y read N5?H

138 Print $R,fl

148 next |

158 ond

160* DATA1

170 data A=>100,B=?138?C=?300

180 $DfITfi2

198 data U=? 2057?E=?404? ~=?554? ld=? 1
H=,444

7

RESUME

FORMAT : RESUME [< destination >] CR
FUNCTION : Bypasses an error and begins execution from line number.

Comments: When line-number is omitted, the next statement is executed.
Destination = {line number | label name | numeric-
variable (line number) | string variable (label name))

Example: iyy on error 9osub $EHR
110 1l £=":B=65
120 H$=fig+chr $
130 Print fI$
140 9oto 120
150 end
160 ERR
170 As$="": EB+1
180 it B>90 then resume 150
19y res ume 17y

78

RETURN

FORMAT:

FUNCTION :

Comments:

Example:

RETURN [< destination >] {CR

Returns the program control to the point immediately after
the point from where it was called by a GOSUB.

A RETURN must not be executed if it has not been pre-
ceded by a GOSUB. Thus a subroutine which ends in a
RETURN must always be called by a GOSUB. GOSUB and
RETURN should be used frequently to create a modular
program. Using the optional line number version of
RETURN generally defeats the purpose of GOSUB.
Destination = (line number | label nhame | numeric variable
(line number) | string variable (label name)}

160 9osub fEX4M
110 9o®Mub $DIbPLnV

N

N

1000$ EXHM

n

N

1490 retur n
1508%DI SPLfiv

1320 return 100

79

RUN

FORMAT: RUN [< destination > I<file name>] [CR |}
FUNCTION : Executes the current program.

Comments: The optional line number can specify the starting point of
the current execution. All variables are cleared when a

RUN is executed.

Example: run

80

SAVE

FORMAT : SAVE < file-name > [, < first-address >, < last-address >
[<fitart-address>]] [CR |}

FUNCTION : Writes to external memory.

Comments: When a file name only is specified, or when an address is
specified in a Basic-G program, this command will write
from the CPU’s optional memory area to tape or disk.

Example: save "CMT:pRO61"

81

SCOD

FORMAT : SCOD'< sprite-number >, < character-code> {CR |
FUNCTION : Assigns character-code to sprite-number.
Comments: Sprite numbers can be from 0 to 31 only.

Example: lyy console? ?2?27?2
110 CIS
128 stchr "0 183c66db7e2400
130 scod O0?&7F
146G scol ., 2?4
150 ma3 1
160 10C 0 tO 100?100
170 end

82

SCOL

FORMAT : SCOL < sprite-number>, < color> (CR |}
FUNCTION : Colors sprite-number using color code.

Comments : Only the character color can be changed, not the pixel
background color.

Example: 10’ SCOL TEST-
20 Print "LIHIM
130 stchr "00 183c66d b7e2400 " to &7F,0

48 seed O0»&7F

50 -for 1=1 to 14

60 Scot O0j I

70 loc 0 to 123796
30 sleep 1

90 next |

83

SG

FORMAT:

FUNCTION :

Frequency :

SG < channel-number> ,[{< frequency> | <noise>}]
[[<volume>] {CR |}

Turns the three tone generators and noise generator on
and off as well as making them produce sound effects.

<channel-number>

= tone generator channel O
tone generator channel 1
tone generator channel 2
noise generator

0
1
2
3

< frequency >

< noise >

Frequency value varies from 1to 1023; 1is
the highest frequency and 1023 is the lowest.
(1024 is the default.)

When the noise generator is used, channel 3,
0—7 specifies the type of noise. 0 -3 are tone
while 4 -7 are variations of white noise.
Notice noises 3 and 7 are dependent on the
frequency of channel 2 (even if channel 2 is
not on).

Noise Frequency

0

W N

~N o o b~

< volume >

N/512
N/1024
N/2048

dependent on
channel 2

N/512
N/1024
N/2048

dependent on
channel 2

Varies from 0-15 with 15 being the loudest.

84

Example: 100 tOr i=i tWYW 10
i 10 tor J=18 t0 45 stop
120 s9 1,30 Jx1o0
130 S9 %>?J_?O
140 so §?7P7J3/3
150 sloop 871
160 noxt J
170 tor K=45 to 18 stOP
188 s9 1,30 7K/ 10
190 S9 ,J,0
200 s 9 .237?1‘?K n
210 sl1eep 57

85

SLEEP

FORMAT :

FUNCTION :

Comments :

Example :

SLEEP < sleep-count> [, < base-time>] {CR 1;j

Stops execution for the specified sleep time. BASIC event
interrupts will be ignored. However, machine language in-
terrupts will be processed.

Sleep time is (sec):
sleep-count x increment-time/60
If the increment-time is omitted, 60 is assumed.

i@ cl1s

110 for '1=1 to 100

12 0 Print. | >

130 if 1>50 then sleep 30?1
140 next |

150 end

STCHR

FORMAT :

FUNCTION :

Comments :

Example:

STCHR < pattern-code > TO < character-code >
[[<character-set-number>] {CR |}

Assign a pattern-code to character-code (usually a hex-
adecimal number associated with an ASCII-code) to deter-
mine a character’s shape.

A character can also be colored using the STCHR state-
ment in the Gil mode.

< Character-set-number >

0
1

2

7 =
8 =

Note:

sprites

for character patterns in other than the Gil mode or
character patterns in the top third of a Gil screen

for character patterns in the middle third of a Gil
screen

for character patterns in the bottom third of a Gil
screen

for color codes for characters in the top third of a Gil
screen

for color codes for characters in the middle third of a
Gil screen

for color codes for characters in the bottom third of a
Gil screen

for character patterns in the entire screen

for color codes for characters in the entire screen

2 to 8 correspond to the Gil mode. The character ‘A’

is constructed below: its pattern code is to the right (use
hexadecimal notation for its pattern code).

100
lio
120

130
140
150
160
170
180

con so lo ??y ?y ?
cls
Stchr "00183c66dfa7e2400" to
<"fit>, 1
r9Peat
Jocato rnd<31E>-rnd(23V)
Print "fi"
fi$=inkoy$
unt.il fig<>""
ond

87

STEP

FORMAT: STEP (on | off) (CR

FUNCTION : STEP ON stops execution whenever the statements in the
program change. STEP OFF resumes normal execution.

Comments: The number of the statement to be executed after STEP
ON is indicated as follows:
STOP AT 0000 where 0000 is the statement number.

Example: stoP on
Ready
run
St oP AT 109
read V
cont

Stop AT 110

STOP

FORMAT:
FUNCTION :

Comments:

Example:

STOP {CR |3}
Halts execution of a program from within the program.

A program stopped by STOP can be restarted by CONT.
This is useful for debugging programs.

100 print mabcdOfg
110 stoP
L™F p#int “hiJkimn

run
abcdeto

StoP at 110
Re dd 9

89

SWAP

FORMAT: SWAP <variable>, <variable> {CR |}
FUNCTION : Transfers the values or contents of designated variables.
Comments : Both variables must be of the same form.
Example: 10 'Bubble sortin'?

20 on error 9osub ER

30 dim R<10)

40 9osub S$INPUT

50 for 1=0 to 10

60 for J=1 to 10

70 if R<J><=R<l)then swap flI<J> R(I>

30 next J

90 next |

100 9osub ~OUTPUT

110 end

120 $INPUT

130 for K=0 to 10

140 inPut fi <kK>

150 next K

160 return

170 $OUTPUT

130 for OP=0 to 10

190 Print fl COP)

200 next OP

210 end

220 $ER

230 if err=25 then resume

240

Print err?errl

90

TAB

FORMAT: TAB (X
FUNCTION : Moves the cursor X character spaces right.

Comments : TAB should be followed by a in order to print material in
particular columns on the screen.

Example : 100 print taO<iO>;"Thi:
i1m1
*un

This is colunn 10

Ready

91

TAPE

FORMAT: TAPE [CR |3}
FUNCTION : Accesses the assembler supplied on tape.
Comments: For use with external data tape recorder only.

Example: tyPe

This will read the machine language from tape into the M5
memory.

92

THETA

FORMAT: THETA (0] 1} (CR

FUNCTION : Sets the mode for trigonometric functions to degrees or
radians.

Comments: 0 is radian mode and the default. 1 is degree mode.

Example: 100 theta O
110 print sin<30>
120 theta 1
130 Print si n<30)
140 end

run
-y ,9y803112Z24u929
0 35

Ready

93

TRACE

FORMAT :

FUNCTION :

Comments:

Example:

TRACE {ON |OFF) {CR|}

Displays a trace of executed line numbers while the
program is executing.

TRACE allows the programmer to see which lines of the
program are to be executed. This is useful only for debugging
programs under development.

100 tor 1=1 to 2

110 tPrint "hir
120 Print "doner"
130 Next |

140 Print "end-"
150 end

trace on

run

Ready

94

TYPE

FORMAT:
FUNCTION :

Comments:

Example:

TYPE (int | dbl | str) (CR |3}
Defines the type of a variable.

In cases where the type designation of a constant or a
variable has been omitted, the TYPE command designates
the type given to the variable or constant. Character-type
designation is effective only with variables.

tyPe str

Read vy
list.

10 A="ABC"
20 B':=3900#
30 C#=12 .345¢#

Ready
tyPe db1l

ready
list

%% é$;"ABC"

38 C=12.345

95

UNTIL

FORMAT : UNTIL < conditional expression> (CR [ij
FUNCTION : Marks the end of a REPEAT loop.

Comments : The REPEAT loop is demarcated by a REPEAT at the
beginning and an UNTIL at the end. All the instructions
between them are executed REPEATedly until the expression in
the UNTIL statement is TRUE. See REPEAT.

Example : 100 repeat
110 L4 X£:r nd<1o’e,>
12, print X

13, unti. XX=3X

This loop will print random integers between 0 and 10 until
it hits an 8.

96

VERIFY

FORMAT: VERIFY [< file-name >] [CR

FUNCTION : Compares a program in memory to another stored on
cassette tape.

Comments: When the file-name is omitted, the first file found on
external memory is compared.

Example: verity "CMT:pROGL1"

97

VIEW

FORMAT: VIEW [<x0>, <y0>, <x1>, <yl >][CR |J
FUNCTION : Creates a view-port on the display screen.

Comments: A view-port is a logical screen display. It can be used to
temporarily reduce the amount of the screen used for
display. When a window is in effect the cursor cannot
be moved outside it. The top left corner of the view-port
becomes cursor position 0,0. Thus CURSOR and LOCATE
commands work relative to the new view-port In general
the M5 can be said be have a view-port of 0,0,39,23 when
the power is turned on. X0,YO0 is the top left corner of the
new view-port and X1,Y1 is the bottom left. X is the column
and Y the row. VIEW does not clear the new view port. A
view-port can be used to do relative character positioning
for easily displaying graphs.

Example: 100 iew 55, 57220

This examPl1l0 creates a window ot tour
lines at tho poO11-om Ot thO sc r08"-

98

VPOKE

FORMAT : VPOKE < memory address>, < output data> {CR |}
FUNCTION : Outputs data to the video memory.

Comments : The data may also take the form of an expression. The
data may not be a list as in POKE.

Example : upoke &2998,|f*
Ready
Priat vPeek (&2988>
255

Ready

99

VSAVE

FORMAT: VSAVE <file-name>, < start-address>, <end-address>
{CR |1}

FUNCTION : Writes Video RAM data to external memory.

Comments: Writes VRAM data between these two addresses to
cassette tape.

Example: usaue "ciit:PIC1"

100

WAIT

FORMAT:

FUNCTION :

Comments:

Example:

WAIT <time out count>[, cbase time>] {CR |}

WAIT limits the amount of time that the computer will wait
for input from the keyboard.

The actual wait time in seconds is computed as:
wait = time out count * (base time / 60)

If the time out count is 0 then the timer will not function. If
the base time is 0 then it is set to 256. If the base time is

left out, then it is set to 60. This function is most useful in

writing games in which response time is important.

18 rem wait -for 0.5 second
20 wait 30j1

30 inPut "data";fl$
40 Print
50 goto 20

101

3.1.

Chapter 3 Basic Commands

Functions

In this section all the BASIC-F functions are defined. The
layout is similar to the previous section. The FORMAT entry is
slightly different; all functions may appear anywhere in an ex-
pression hence we do not specify the context syntax. Func-
tions can not be executed directly without the use of a state-
ment such as PRINT. Functions which take parameters are
shown with sample variable names; constants may also be us-
ed. If more than one type is possible, variables of both types
are shown.

102

ABS

FORMAT: ABS (X)
FUNCTION : Returns the absolute value of X.
Comments: X must be a number.

Example: Print afasc-34>
34

Ready

103

ASCII

FORMAT :
FUNCTION :

Comments:

Example:

ASCII (X$) {CR

Returns the ASCII code for the first character of string X$.

As a matter of legibility X$ should be one character long
or replaced with ASCII(LEFT$(A$,1)). ‘ASCII’ stands for
‘American Standard Code for Information Interchange.
The converse function is CHR$(X).

100 A$="ABC"
1183 priTit ascii <A$)
128 end

104

ATN

FORMAT: ATN (¥
FUNCTION : Returns the arc tangent of X.

Comments: Legal range for X is 8 E74

Care should be taken to use either radians or degrees
consistently.

Example: 100 fizat n<10)
110 Print fi
120 end

105

CALC

FORMAT:

FUNCTION :

Comments:

Example:

CALC (< string >)

Performs a BASIC-F operation on an expression
represented as a string.

This function allows BASIC-F to compute expressions
unknown at the time the program is written. This is a very
powerful function, but it may introduce problems in debug-
ging. This function is useful in mathematical programs in-
volving equations unknown to the programmer. See also
EXE.

10 '"Calcl ation

20 input "calc";fi$
30 fl=calc(fi$)

40 Print RS$; "=";fi
45 Print

50 goto 2o

106

CDBL

FORMAT: CDBL (X

FUNCTION : Converts an integer into a real number.

Comments: None.

Example: 100
110
120
130

run

xX:10X

Print X 3 X
Print cdb1<XX>/3
end

Ready

107

CHRS$

FORMAT:
FUNCTION :

Comments:

Example:

CHRS$ (X)

Returns the character whose internal code is X

This function is useful for accessing invisible or non-
displayed characters. A complete list of character codes can
be found in the appendices. X must be a valid ASC11 code.

10 ° CHRS$ TEST
20 for 1=65 to 90
30 Print <chr %%l >’

40 next |

108

CINT

FORMAT:
FUNCTION :
Comments:

Example:

CINT (R)

Converts a real number to an integer.

Rounding occurs in the conversion.

100 Print cint<1.4)
110 Print cint<1.5)
120 end

109

COS

FORMAT: COS(X)
FUNCTION : Returns the cosine of X

Comments: As with all trigonometric functions, care should be taken

to use either radians or degrees consistently. The range of values
for Xis £2.8 E 16.

Example: 100 fi—cos(Pi«3
1i0 Print fi
120 end

110

ERR

FORMAT: ERR

FUNCTION : Returns the error code of the most recent error.

Comments: This function, along with ERRL and ERRLS, is useful for

programs which trap errors and attempt to deal with them
internally.

Example: 180 $HABC
118 ft=B $
128 Print ft
130 return

111

ERRL

FORMAT: ERRL

FUNCTION : Returns the line number of the most recent error.

Comments: See also ERR and ERRLS.

Example: 100$fiBC
110 fi=B$
120 Print fi
run
Err 13 in 110
Ready-
print err>errLerrl$
13 110 ABC

Ready

112

ERRLS

FORMAT: ERRLS

FUNCTION : Returns the label of the line in which the most recent error
occurred.

Comments: See also ERR and ERRL.

Example: 100 $fiscC
110 fi=B$
120 Print Q
130 return

run

Err 13 in 110

Ready

print err?erril»err 1%
13 110 ABC

Ready

113

FORMAT :

FUNCTION :

Comments :

Example:

EXE < character string> {CR |}

Executes a BASIC-F statement which has a string
representation.

This statement allows the program to execute BASIC-F
statements which are unknown when the program is written.
It allows the program to write program segments and
execute them. The string must not contain another EXE com-
mand and an error will occur if there is a loop stack. This
statement may also result in programs which are very diffi-
cult to debug. Since the program may execute another pro-
gram, which does not exist in the original program, bugs may
be difficult to find. This function is very useful for a BASIC-F
program which can control other BASIC-F programs, and
still maintain control of the computer. See also CALC.

i00 On Orror <€B0sWb
110 inPijt P$

“0 0o o 'gosijb"+P$
=T0 8oto '%to

140$ Hfi fi

190 Print " HHf fi fi fi fi
rfio roturn

1(0$BBB

1°0 Print "BRBBBBB
190 roturn
ftoogccc

i0 print "ccccCcc
iZO rotisrn

"'To *ERR
40 7t o1r =0 t
50 roslWmo %io

|
o

hon

114

EXP

FORMAT: EXP (X)
FUNCTION : Reforms e to the power of X

Comments: The range of X is from -175 to +175 exclusive.

Example: i00 fizexp <2>
129 print n
ioo ond

115

FIX

FORMAT: FIX(X)

FUNCTION : Returns the truncated integer portion of X

Comments: FIX (X)= SGN (X)* INT (AGS(X))

Example: 10y x_: a
}!0 I 1
0 Prin
iT0 end
run
1

Ready

116

FRE

FORMAT:
FUNCTION :

Comments:

Example:

FRE (X)
Returns information about memory usage.

FRE returns five values according to the following table:

0 - maximum size of work area

1 - remaining user area

2 - remaining free work area

3 - remaining free user area and work area
4 - |last address used by BASIC

Pr int tf'hc3
6849

This represents the total free RAM available to the user.

117

HEX$

FORMAT: HEX$ (X)

FUNCTION: Returns the hexadecimal equivalent of X in four hex-
adecimal places.

Comments: No Zero suppression.

Example: Print hex$<65535>
FFFF

Ready

118

INKEYS

FORMAT:

FUNCTION :

Comments:

Example:

INKEYS

Reads in a character from the keyboard input buffer,
without waiting for a keystrike.

This function takes a character without waiting, like INPUT
does. If the user has typed a character, it will be read in;
otherwise the character will be a null (00). This function

is useful in games as well as for writing ‘bomb’ proof input
function. With INKEYS it is impossible to create an error
as with INPUT, so routines can be written which will ac-
cept input of any form without generating BASIC-F errors.

100
110
128
138

»$=iInkeys$
it fl$<>chr $<13>then 90to 188
print "Exit"

end

119

INP

FORMAT:
FUNCTION :

Comments:

Example:

INP(X)

Accepts one byte of input from port X

X must be in the range 0-255. A port will always provide a
byte without waiting for input. For example, a program to
read a serial port connected to a modem will always have
a byte ready even if the modem has not received a byte.
To use a serial port correctly two actual ports must be
read. The first port will have a bit to indicate when a byte
has come to the other port from the sending device,
modem or otherwise.

100remn MODEM = 510 Port
110 roPOat

I-0 «= INP<STATIIS>
i70 until Y=

i20 x=inP MODEM)

1“0 C*=-chrs <X)

i60 rotyrn

This loop will wait until it receives a byte from the port. For
this loop to work STATUS must be assigned the number of
the status port on your serial port and MODEM must be
assigned the number of the serial port itself.

120

INSTR

FORMAT : INSTR ([X,] STRS, SUBS)

FUNCTION : Searches string STRS for the first occurrence of string

SUBS.

Comments : The search for SUBS starts after the Xth character in STRS.
If the substring is not found, then the result returned is zero.
This function is very useful for some applications but con-
sumes a great deal of time, especially if the strings involved

are long.
Example: 100 n$="fibcDEFG"
110 8i="D"
120 C=instr <1,R B
170 Print C
140 C=instr <5,R$,B *
150 Print C
160 B $="H"
170 C=Instr (1?R$?B$
180 Print C
190 end
run
4
0
0
Ready
0

121

INT

FORMAT: INT (X)

FUNCTION : Truncates the real and returns only the integer portion of X
Comments: Use the FIX function to round a real number.

Example: 100 0=10:B=1.5
110 Print R*e
120 Print HA*in
130 end
run
15
10

Rea dy

122

LEFTS

FORMAT: LEFTS (X$, Y)

FUNCTION : Returns the left substring of X$ whose length is Y

Comments: Care must be taken to ensure that Y does not exceed the
length of X$.

Example: 100
110
120
130

run

fi$=" 12345RBCDEuwxyz "
Bf=1eft fis$,5>
Print B $

end

12345

Ready

123

LEN

FORMAT: LEN (X9$)
FUNCTION : Returns the length of character string X$.

Comments: The maximum length of a character string is 18.

Example: 100 R$="HHCDEF B"
110 B=1len RS>
120 Print B
run
Ready

124

LN

FORMAT: LN (X)
FUNCTION : Returns the natural log of X
Comments: The natural log is a logarithm with base e.

Example: mfor 1=% to 10

(EVVENTNTN
BWNRO
00000
o
-
=)
A

125

LOG

FORMAT: LOG (X)

FUNCTION : Returns the log of X to the base 10.

Comments: None.

Example: 10 for 1=1 to 10
20 fizlo09<I>

30 Print Al
40 next |
50 end

, 126

MID$

FORMAT:

FUNCTION :

Comments:

Example:

MID$ (X$, X [,Y])

Returns the substring of X$ starting at character X and
ending at character Y.

The maximum length of a character string is 18.

100
110

120
130

fl$="12345RBCDEvwxyz
B$=mid$(RS$j 5)
Print B$

end

127

NUMS

FORMAT :

FUNCTION :

Comments:

Example:

NUM$ (X)

Converts the numeric value of X to its character
equivalent.

Do not exceed maximum integer value.

100 M=999

110 B$"fBcC"

120 C$=B$+num$<fi>+"Kv"
130 Print c$

140 end
run
fiIBC 999Yyy

Ready

128

OuT

FORMAT : OUT <port number>, [<output data>[,..]] {CR |}
FUNCTION : Sends data byte by byte to a port.

Comments: The output data may be the result of an expression. Care
should be taken with port numbers as both hexadecimal
and decimal numbers are used to refer to both ports and
data. Output to an incorrect port could damage a program
saved on tape or disk.

Example: 100 oUt «207 Z 10

129

PEEK

FORMAT:
FUNCTION :
Comments:

Example:

PEEK (X)

Returns the contents of memory address X

Returns 8 bits stored in CPU memory address X

180 A=peek @& FFF)
118 Print- A
120 end

130

PEEKW

FORMAT:

FUNCTION :

Comments:

Example:

PEEKW (X)

Returns 16-bits from CPU memory address X and address
X+1.

This will return both X and X + 1

180 Poke &7200, &30
1i0 Poke &fF2017? 40
120 fi=peekw<&7200)
140 Print int(fid256>
150 pPrint fi and 255

168 ond

131

Pl

FORMAT: =]
FUNCTION : Returns the value of Pi

Comments: Pi = 3.14159265359

Example: 10@ fi=sin<Px/
110 PriInt H
izZy ond

132

RDSTS

RDSTS (X)

FORMAT:

FUNCTION :

Comments:

Example:

Reads the statement indicated by the cursor from the
beginning.

Characters to the right of position X will not be read. The
end of the statement is indicated in the display by '00. If
X does not exhaust the statement, the string CR ('OD) is

attached.

10 els

29 Print cursor(5>1)5"Hello there!"
30 locate 5>1

40 for C=1 to 13

50 A$=rdst $<C>

60 Print cursor(5fC+5)

70 locate 5>1

30 next C

90 end

133

REG

FORMAT:

FUNCTION :

Comments:

Example:

REG (X

Returns the register value after a CALL statement has been
executed.

X can signify various registers:

0 AF
1 BC
2 DE
3 HL

Data is stored “high-low.” Thus if Ar contains &2E and Fr
contains &30 then “NEWAF" below will have &2E30. EX-
CHG (NEWAF) gives &302E and EXCHG (NEWAF) AND
255 gives &2E.

10
20
30
40
50
60

70
30
90

els

9osub $SETCRLL:" Prepare for <call
call ROUTINE,RFREG,, , HLREG
RF=re9<0>

HL=re9<3>

Print cursor<0,2)?“RFREG=Sc";hex$<RF
"HLREG=&"*hex$(HL)

end

$SETCRLL

ROUTINE =Stl4BD

100 RFRE6=&4100
110 HLREG=S3300

120

return

134

RIGHTS

FORMAT : RIGHTS (X$, < length>)

FUNCTION : Returns a substring from the right side of X3 of specified
length.

Comments. In general all strings can be done with just the MIDS
instruction.

Example: 100 fi$=" 12345fiBCDEuwxyz"
110 B$=r i ht$(fi$; 5>
128 Pri
138 en

run
§.uXYyz

Ready

135

RND

FORMAT:
FUNCTION :

Comments:

Example:

RND (X)

Returns a random number between 0 and X.

X is the seed. For most purposes, RND produces an acceptable
distribution of numbers. For extremely sensitive applications,
however, other methods of random generation should be used,
even to the point of special hardware.

When X is an integer, the value returned will be an integer
between O and X. When X is a real number, the value

returned will be a real number between O and X

i00 randomize
110 P=rnj<10>
120 8=rnd<10 >
130 Print "rnd2%
140 Print "rnd1l
150 end

136

RPTS$

FORMAT: RPT$ (<repetitions>, X$)
FUNCTION : Returns a string which consists of < repetitions> of X$.

Comments: This is useful for building long strings from a small pattern.

Example: 100 1len 30
110 X$=rpt$<33 ?"*">
120 Print X$

139 end
r dn
***+ * % k% k% % k% % %k k¥ %k k¥ k¥ ¥ ¥ ¥ ¥ *¥ * * *¥ ¥ *x *x *

137

SGN

FORMAT: SGN (X) {CR |3}
FUNCTION : Returns the sign of X.

Comments: SGN (o) = 0; if X>0 then SGN (X)= 1, otherwise SGN (X)
= - 1. X may be real or integer or hex.

Example: 100 ft=19
110 Print sonc<fi
120 ft=9
130 Print sgnCcfl
140 ft=- 10
150 Print s9n<R
160 end

138

SIN

FORMAT: SIN (X)
FUNCTION : Returns the sine of X.

Comments: The range of values for X is £2.8 E 16.

Example: 100 fl=sin
ii0 Print
120 end

run
0.8660254

Ready

139

SOR

FORMAT:
FUNCTION :
Comments:

Example:

SQR (X)

Returns the square root of X.

X can be a real number or an integer.

100 fi=2

110 B=sqr<fl>

120 Print "SQR<2>

130 Print "SOR<2)*SQR
140 end

140

TAN

FORMAT: TAN (X)
FUNCTION : Returns the tangent of X
Comments: The range of values for X is +2.8 E 16.

Example: 188 X=23
118 fi=t an<X>
128 Print ft
138 end

141

TIME

FORMAT:

FUNCTION :

Comments :

Example :

TIME

Returns the amount of time since the system was powered
up. Value is in seconds.

The value returned is in seconds.

io0 filN=int <timess 0>
110 SEC=t ime mod 60

t20 Print MIN- "MIN"B5SEC*1SEC
130 end

142

VAL

FORMAT:
FUNCTION :
Comments:

Example:

VAL (X$)
Converts a character string into its humeric equivalent.
The string must be a legal number in BASIC-F.

100 ft$="100"

110 B$="55"

12 0 Print, fi $s+B
130 Print val<fi >+ual(Bs$>
140 end

143

VARPTR

FORMAT : VARPTR ({X|X$})

FUNCTION : Returns the actual memory address of a variable.

Comments: This function is required when machine language
subroutines are to access BASIC-F variables. After the ad
dress has been obtained it can be passed to the
subroutine by any of several methods.

Example: 100 fif=255

110 B=uar Ptr(fi'»
11'0 c=Peak 8

130 Print C

140 end

144

VPEEK

FORMAT: VPEEK (X)

FUNCTION : Returns the contents of video memory at location X

Comments: Displays the data stored in video memory address X.

Example: ioo print
110 Print cur 8r <0?20>5"fi"
120 U=vPeek (&3800)

138 Print "fiSCll<" chr$(U>">="
i 4 pnd

145

XCHG

FORMAT:

FUNCTION :

Comments:

Example:

XCHG (X)

Swaps the order of the upper and tower bytes of X

Using XCHG moves original bits 0-7 (upper byte) to new
bits 8-15 (tower byte) and original bits 8-15 (tower byte) to
new bits 0-7 (upper byte)

190 X =123

110 fiy=Xch3<X >
120 Print fiy
130 end

146

Chapter 4 Application Section

4. Applications Section

This section contains a set of useful programs which will run on
your M5. They have all been tested by our staff. These programs
make use of the special features of the M5 and BASIC-F. Each
program has a statement of general function, a description of how
to run the program with a sample run, a description of how the
program runs and the program listing itself.

147

Chapter 4 Application Section

4.1. Loan Repayments

This program calculates the time needed to repay a loan. Given
the amount of the loan, the interest rate, the number of payments
made per year and the amount of each payment, the program will
return the length of time that it will take until the loan is completely

repaid. The program calculates the time according to the following
equation:

"V oeq(1+4,) | N

where Y = term of payment in years
principal

interest rate

number of payments per year
amount of each payment.

oz~
I nn

This could be used to calculate the length of time it would take to
pay off a mortgage. How many years would it take to pay off a mort-
gage of $20,000 at 18% by quarterly payments of $1,000?

148

Chapter 4 Application

10 cl s
207

30 rem comPuta the jength ot time

407 rePay a loan

50 7

60 locate 5,5

70 Print- "Term of a 1loan”

80 Print

907

100 rem inPut- the data for the ¢

110

120 inPut "reQ9uilar Payment ";R

130 input "PrinciPa1l1l "*P

140 inPut "annual imerest rato

150 inPut "number of Payment<® PO

1607

170 rem Perform comPutations

188

190 V =-09<1-<P+Cl i00)/ <N+R>]
100/ N) *N) >

200

210 rem compute years and months

220

230 MeEint <V*12+0.5> sVO=Int (M i2>

240 M=EM-VO* 12

250 Print "Term~"%»%0;" year 2, "

260 Print "and";Mr" months

270 Print

280

290 inPut "Once mor0? <y/n VA

300 if 1efts(VT,1)="y" then go0to

3857

310 Print

320 Print "done?

330 end

149

a

r

/

Section

ion

ears

Chapter 4 Application Section

4.2.

Initial Investment

This program calculates the investment necessary to provide a
stated future value in a. specified time period. Suppose you want
to earn $10,000 from interest over 5 years, how much money
would you have to put in the bank to start with? For any given in-
vestment, interest rate and time period the program calculates the
required-initial investment. The program requires that you enter the
time period, the goal total, the interest rate and the number of times
that the interest is compounded in one year. The program bases its
calculations on the following equation:

p = (1+i/N)NY

where P = initial .investment
T = future value
N = number of times compounded per year
Y = number of years
i = interest rate

The interest rate must be entered as a whole value: for instance

8.5% is entered as 8.5. The number of years can include fractional
parts, such as 5.5 for five and one half years.

150

Chapter 4 Application Section

10 c1s

20 10cate j>5 .

30 print "Initial Inmestme nt

40 print

50" . .

A0 rem inPut data for comPutat ions
70?2

80 Print

90 inPut "firnount of 9o0al "'T

100 inPut "# of cornPounds Per year 15H
iio inPut "# of years "5V

120 ;inPut "Nominal interest rate ";|I

130 7

1401rem Per for m comPutations

150

160 1I:I/ N/ 100

170

130JP:T <i+n <n*v>

190

200 Print

210 Print "Initial inyestment required
220 Print "to achieue 9o0al total is i"
238 Print int <P-100+0.5>/100

240 Print

250 Print

260 inPut "Une more time? (y n) =~'Vs

270 it lefts<Vv$,1) ="y" ther oto 10
280 Print

290 print "done"

300 end

151

Chapter 4 Application Section

4.3.

Regular Deposits

This program calculates the amount of each deposit required to
reach a goal total within a specified time period. Let us assume that
you wish to save $5,000 to buy a car. You wish to buy the car at
the end of one year and you want to know how much money you
need to put in the bank each month. Or let's say that you wish to
save up the money for a down payment of $10,000 on your home.
You want to save the money over three years. How much must you
put in the bank each month in order to get the desired total at the
right time?

To use this program you must enter the values of the total, the
number of years and the interest rate. You must also specify the
number of times per year that you will make deposits. This allows
you to skip one or more months. For example, you may wish to
make 11 deposits per year, skipping December as your other ex-
penses may be high that month. Or you may decide not to make
payments over a vacation month but spend the money on your holi-
day. The interest rate that you enter must be expressed as a whole
value, such as ‘10’ for 10%, or ‘4.5’ for four and a half percent.
Years may be expressed as fractions as well, for example six mon-
ths would be entered as ‘.5’ for half of one year. The calculation for
regular deposits is based on the following equation:

R = t ((2-H/N)My - 1)
where:
R = amount of regular deposit
T = future value
i = interest rate
N = number of deposits per year
Y = number of years.

152

Chapter 4 Application Section

10 c1s

20 -

30 rem comPute the deposits reduired
40 remto achieme a desired total at

50 rem sonme future date

60 -

7 0 locata 07?5

80 Print “Re9ular DePosit- sched yi1e”

90

100 Print

185"

110 rem inPut necessary data

120" N

130 inPut "Yhat is the desired oiall5T
140 inPut "what is the interest rate":|
158 inPut "Hou many dePosits Per year H;N
160 inPut "Hoy many years to o90a dato0*“;
170’

180 rem Perform the comPutations

190"

200 1=1/ N/ 100

210 R=T*|a<<1+1>A<N*V)- 1>
220

230 rem I'Ound Oft tO cents
240°

250 R=int<R*100+0.5 >/ 100
260

270 Print

2So Print "Each dePosit must be $"*R
290°

300 Print

3 10 inPut "finother run <y/n>"*W

3 20 if 1left 3, 1>="y" then oto 10
330 °

340 end

153

Chapter 4 Application Section

4.4. Future Value of Regular Deposits
(Annuity)

This program calculates the total amount which will be saved if
deposits are made regularly. Assume that a payment is made to an
interest bearing account each month or at some other interval.
What is the total amount in the account at any given time? For ex-
ample, assume that you put $75 from your pay into a special ‘rainy
day’ account each month. How much will you have saved after a
year and a half, or after five years? Or assume that your company
matches your $50 savings with a benefit in a company savings plan
at 8 %, how much will you save in three years? This program can
perform the necessary calculations. You must enter the amount of
each deposit, the number of deposits per year, the number of years
and the interest rate. The number of years may contain a fractional
part: for example three and a half years is entered as ‘3.5’ years.
The interest rate is entered as a whole value. For example, seven
and eight tenths of a percent is entered as 7.8’ for the program.

This program assumes that interest is compounded with each
deposit according to the following equation:

where:

= total value after Y years
amount of regular deposit
number of deposits per year
number of years

= nominal interest rate

—<zx-
1

As an exercise, modify this program to calculate the result with in-
terest compounded over different time periods. Many accounts to-
day compound interest on a daily basis, rather than monthly. This
involves changing the value of Y for years and the way the interest
value is used.

154

Chapter 4 Application Section

10 Print cinrf (1

207

38 locate 0j5

48 Print "Futur its
50 Print " <annuity>"

60 Print

707 load data t

887

100 inPut "filmou ?R
110 inPut "nomi

120 inPut "numb o n UN
130 inPut "numb linli

140

150 rem calcula sit
160

170 I=1«H/ 100

130

190 rem calcula e annully

200

210 T=R+<<|+1>

2287

230 Print "Future value = $"*

240 Print int<T*100+8.5>/ 188

250 Print

260 inPut "More data? <y/n) "?V$

270

280 if left $<V$, 1>="y" then 90t0O i0
290 Print

300 Print "done"

310 end

155

Chapter 4 Application Section

4.5. Remaining Balance on a Loan

This program calculates the balance remaining on a loan after a
specified number of payments has been made. You must input the
amount of each payment, the number of payments per year, the
amount of the principal, the annual interest rate, and the payment
number from which you wish to calculate the remaining balance.
The interest rate is entered as a whole value, thus 17% is entered
as 17 and 6.5% is entered as 6.5.

For example, if you have a loan of $10,000 at 12.5% interest and
your payments are $200.00 per month, how much will you still have
remaining to pay after the 11th payment in the third year?

156

Chapter 4 Application Section

10 C1s

207

30 rarn comPuts
407 on a 1o
507

60 Jocata 5,5
70 Print "Rama oan
30 Print

907

100 ram inPut
lio7

120 inPut "rag
130 inPut "Pri ci-al ";P

140 inPut num ar of paymants Par year "'N
150 inPut "ann

1667

170 ram Par for

1307

190 I=1 100

2007

210 inPut "Las
220 inPut "wha
>WiL

2307
240 ran initia
2507

260 BO=P

270

230 rem accumu
290 7
300 efor
310

360 Print "Ram
370 Print intc<
330 Print

3907

400 inPut "Onc
410 if laft$(Vv
420 Print

430 Print "don
149 and

'V$

157

Chapter 4 Application Section

4.6.

Prime Factors

The following program calculates the prime factorization of a
given number. Prime factorization is the expression of a number as
the product of its prime factors. The method is to check all possible
factors from 2 up to the square root of the number. In each case
each factor is removed until the next factor is required or the fac-
torization is complete. When this program detects a prime, it prints
out that a prime has been found. The program, as given, does not
make use of indentation. As an exercise, rewrite the program using
indentation. Also, the program contains a branch at 230, out of the
FOR NEXT loop. This is particularly bad programming style. As an
exercise, rewrite this program without branching out of a loop.

To run the program, simply type RUN and enter the number that
you want factored. After the factors have been printed, the program
will ask for another number to factor. When you are done, ask for O
to be factored, and the program will halt. As an exercise, modify the
program to print out all the prime factors of the numbers from one
to 1000. Another good exercise would be to change the program to
display the current factor being tested at the top of the screen. Fac-
tors already found could be displayed near the middle of the screen.
When all factors have been found, the program should wait till the
user is done, then continue. This will require that you use the cursor
control abilities of the M5, under BASIC-F.

The following short program is a stripped-down version of the
previous prime factors program. This program is used to generate
prime numbers only. As an exercise, see how many primes your
M5 can generate using this program. Can you think of any ways to
make this program faster? As an exercise modify this program to
print out only twin primes, i.e. those pairs of primes with only one
number between them, like 5 and 7 or 17 and 19.

158

100
110
120
130°
140
145
147

[e
© ONo»
O oOCo

200
210
220
230
240
245

247
250
260
270
280
290
300

120
145
147
150
218
220
230
240
245
300

rem prime TFfactors

els
locate 4>5
Print "Prime Factor s"

Print
inPut "lWhat number do you want

ll; N
Print "2 is Prime

<sqr <N+0.5>>
M to- IN

=int <N L)then <3oto 258
next

if SW=O0 then Print N*" is Prime

300

Print N: 3oto 300
SW=1

if IN<L then 9oto 290
Print L;"*"*

M=L: N=N/L: 9oto 210
Print L

PrintiPrint: goto 158

nt "Primes"

1
r
N=int <s9r <N+0.5 >>
or L=3 to |IN

if M L=int<Ns$L)then 90oto 158

next L
Print N?
goto 150

159

factore d

goto

300

Chapter 4 Application Section

4.7. Long Number Arithmetic

This program allows your M5 to do simple arithmetic on very
large numbers. Normally the size of the numbers that can be handl-
ed by your M5 under BASIC-F is limited by the BASIC-F interpreter.
Integers have a limited size. With this program you can represent
numbers of arbitrary size and do addition, subtraction and multi-
plication with them. The only limit on the size of the numbers is the
memory capacity of your computer. In other words, except for the
space occupied by the program itself, you can use the entire mem-
ory of your M5 to store 3 numbers using this program. This means
that you can store incredibly large numbers.

The program works by breaking the large numbers into compo-
nents which are small enough to be held in normal integer variables.
These small parts of your number are stored in arrays. The arrays
are A, B, and C and are declared in line 210. Array C is twice as
large as A and B in order to accept large products of A*B. You can
change the size of A,B, and C by changing the values in lines 180
and 160. M must always be 2*N + 1. Also, you can control the larg-
est value in each part of the number by changing line 200. If you set
this value (P) to the maximum power of 10 that can be represented
on the M5 in BASIC-F, then you will be able to store the largest
number of digits possible with this program. The program itself is
extremely modular, and each section does only one task. The first
routine is used to read in numbers from the keyboard. When using
the program, zeros must be entered if the first part of the number is
not used. For example, the current listing of the program requires
numbers broken into 5 parts. If you want to enter the number 100,
the first four parts must all be 0, and they must be entered. As an
exercise you might try to modify the program so that only the last
number need be entered, to save time. The program has four more
subroutines. Each of them is called with a GOSUB. The first routine
is used to print the long numbers on the screen. The second is used
for addition, the third for subtraction and the fourth for multiplication.
There is no routine for division in the program. Notice that division
can be done by repeated subtraction. As an exercise add a new
subroutine to perform division by calling the subtraction routine until
the remainder is smaller than than the divisor. Print out the quotient
and the remainder. As another exercise, you may wish to convert
the input routine to use DATA statements, to save typing. Another
interesting addition would be the ability to perform several operations,
by reading in an expresion and then executing it one step at a time.

Remember, the numbers must each contain five groups of four
digits. The possible operations are +, -, and *.

160

100
110
120
130
140
150
160
170
130
190
200
210
220
230
240
902D
260
270
280
298
300
318
320
330
340
350
360
370
380
390
400
410
420
430
44 0
450
460
470
430
490
500
510
520
530

1000
10 10

1020

ForE Nnumbo r o Po rations

Conso 1o 22?273
cls
7

locato 47?%¢
Print- "Lon 9 number ' OPERATIONS

L=4: N=4: M=9

P=10000
din A<N>>B<N>>C<M>

Printi print
Pr int "Enter the first number"
$0ADJ remn read a number
1 for 1=0 to N:A<I>=C(I>:next 1
Print "Enter the second number ™
9osub $LOAD
for 1=0 to N! B(I>=C<I>: next |1

inPut "ilhat oPerator? "?0Ps

for 1=0 to H: C(D=A(I>: next 1
9osub $SHOLJ] remn Print a
Print
Print OP$: remn Pr int oPerat or
for 1=0 to N: C(I1)=B<I>: next |1
9osub $SHOBJ rem Print b
Print
Print "="

7
for 1=0 to M: C<I)=0: next

rem cal 1 aPProPriat0 OP

if OP$="+" then Qgosub $ADD
if OP$="-" then 9osub ssUB
if OP$="*" then =sosub $MUL
9osub s HOL

Print; Print "donOH

7

end
7

s O ND

rem read a number

161

1040 Print "enter 5 9rouPs of 4 dibits

each "
10 50 Print
10 60 for I=N to 0 steP-1
1070 inPut C
1080 next |
1090 return
1100
2000 $SHow

2010 SU=0
2020 for K=M to 0 steP-1

2030 if C<K)=o and SW=o0 then goto $I1

20 40 if SW=0 then SW=I1:Print midf (num$
<C(K>) f2) S:90to $11

2050 if C(K)=0 then Print 10000"*:goto
nyqn

2060 Print right$<"0000"+mid$<n um3(C(
K)y>,2),4 >

2070 $11

20 80 next K

2090 iIf SW=0 then Print "0';
2100 oreturn

2110

3000 $ADD

3010 rem addition

3020

3030 CAiRRV=0

3040 for 1=0 to N

3050 C<l) = | >+B<Il) +CARRV
3060 CfIRRV =0

3070 if CCIl)>=P then C(I>=C<I>-P:CfIRRV
3030 next |

3090 K=N+1

3100 C<K>=CflRRV

3118 tﬁturn

3120 :

4000 s$sus

4010 °

4020 rem subtracti on

40 30

40 40 BRRW=0

40 50 for 1=8 to N

4060 C<l>=fl<l)-B<Il>-BRRW
4070 BRRW=o0

4030 if C<l)<0 then C<l)=C<Il>+P: BRRW-=1
4090 next |

4100 return

4110

5000 s MJL
5019

162

5020 rem mu lti P1ly

50 30

5040 CPRRV =38

5050 ofor 1=0 to N

5060 CPRR V=0

5070 ifor J=0 to N

5080 C<l+J>=C<I|+J>+H(Il> B<J> +CPRRV

5090 CPRRV=0

5100 if C 0+J)>P then CPRRV=int <C(I
QCl-:C<1+J>=C(I1+.J>- CPRRV+P

5110 neXt J

5120 C<I+N+1) =CPRRV

5130 next |

5140 return

163

APPENDIX A

CODE INFORMATION
CHARACTER CODES

Following are the ASCII representations of all characters stored and
displayed on the M5 computer.

To use this appendix, find the character you want to display. Then look at
the row of numbers and letters across the top and find the one that lines
up with your character. Now look to the left at the leftmost column of
numbers and letters for the corresponding number or letter. Combine these
two numbers or letters. The one you found first is followed by the second.

Let's look at three examples. Verify they’'re correct in the table below.

Character Character
code
$ &24
H &48
+ &2B
] BCDEF

ox ©

164

APPENDIX A

DEC (HEX) CODE DEC (HEX) CODE DEC (HEX) CODE
32 (20) 71 (47) G 110 (6E) n
33 (21) ! 72 (48) H 111 (6F) o
34 (22) " 73 (49) 1 112 (70) p
35 (23) # 74 (4A) 113 (71) g
36 (24) $ 75 (4B) K 114 (72) 1
37 (25) X 76 (40 L 115 (73) s
38 (26) & 77 (4D) M 116 (74) t
39 (27) 78 (4E) N 117 (75) u
40 (28) (79 (4F) 0 118 (76) v
41 (29)) 80 (50) P 119 (77) w
42 (2A) * 81 (51) Q 120 (78) «x
43 (2B) + 82 (52) R 121 (79) 'y
44 (20 83 (53) S 122 (7A) z
45 (2D) - 84 (54) T 123 (7B) <
46 (2E) . 85 (55) W 124 (70 !
47 (2F) I 86 (56) V 125 (7D) >
48 (30) © 87 (57) w 126 (7E) ~
49 (31) 1 88 (58) X 127 (7F) <
50 (32) 2 89 (59) Y 128 (80)
51 (33) 3 90 (5A) 2 129 (81) O
52 (34) 4 91 C5B) [130 (82)
53 (35) 5 92 (50 \ 131 (83) *
54 (36) 6 93 (sD)] 132 (84) v
55 (37) 7 94 (5E) 133 (85) x
56 (38) 8 95 (5F) 134 (86) T
57 (39) 9 96 (60) t 135 (87) |
58 (3A) 97 (61) a 136 (88) -
50 (3B) 5 98 (62) b 137 (89) H
60 (30 < 99 (63) ¢ 138 (8A) h
61 (3D) 100 (64) d 139 (8B) +
62 (3E) > 101 (65) e 140 (80
63 (3F) 2 102 (66) f 141 (8D)
64 (40) 3 103 (67) g 142 (8E) =
65 (41) A 104 (68) h 143 (8F) =
66 (42) B 105 (69) | 144 (90)

67 (43) C 106 (6A) | 145 (91) -
68 (44) D 107 (6B) k 146 (92) -
69 (45) E 108 (60 | 147 (93) 1
70 (46) F 109 (6D) m 148 (94) 1

165

APPENDIX A

157

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

184
185
186
187
188
189
190
191

J8ES

© k< U mmh U

S=8

EEI SRS

£

GEEEEEEEEEEEEEECEOERE

ew c

- -

Omé\?'—‘

[0}

o ——

C»-KI

DEC (HEX) CODE

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

9
(@),

&

(DD)

EEELEERAREEST

166

YOS N0 XN F<mplth?

- N P>O O —1th

FPRXTNn~T0O0°'H yo

DEC (HEX) CODE
235 BB

236
237
238

239
240
241
242
243
244
245
246
247
248
249

251
252 &Hl%
253

254
255

228
| S A< > %

333333

33

3
ﬂ%‘>->I><'z <.|_\|_‘|_\ Sl

DEC—*-daotes base 10
HEX—*- daotes base 16

COLOR CODES

Color

No color
Black
Green

Light green
Deep blue
Light blue
Deep red
Cyan

Red

Light red
Deep yellow
Light yellow
Deep Green
Purple

Gray

White

167

Color code

MTMUOUOTW>OONOOUNWNRO

APPENDIX B

APPENDIX C

CONTROL CODES

These are functions that control the screen, cursor and a few other
specialized functions. When using control functions directly after a READY
prompt, press the CTRL key and the control key simultaneously. But when
using control codes in a program (for example, in a PRINT statement), first
press the CTRL and SHIFT keys before pressing the control key. Also
enclose the control character in double quotes.

Keyboard Base

Key

<KCHLVLITOTVOCPZZIrRae—-—IOTMMOO®WD>>

=

10

© 0O ~NO U WNREO

NNN R B R R R R p R =
NPFobhNGRELKRES

23
24
25

26
27
28
29
30
31

Base Function

16

00
01
02
03
04
05
06
07
08
09
0A
0B
oC
0D
OE
OF
10
n
12
13
14
15
16

17
18
19

1A
1B
1C
1D
1E
1F

Ignore

Ignore

Return cursor to beginning of current line
Scroll screen display down

Shift screen display left

Scroll screen display up

Shift screen display right

Bell

Backspace

Tab the cursor eight spaces

Move cursor down one line

Move cursor to home position

Clear screen display

Same as RETURN key

Move cursor to beginning of next line
Change to standard mode

Change to insert mode

Change to multi-color mode

Change to Gil graphics mode
Change to Gl graphics mode

Return to text mode

Change to visible screen

Alternates between the visible and
invisible screens, input is sent

to the displayed screen

Same as RETURN key

Delete characters to the right of cursor

Alternates between the visible and invisible
screens only

Writes input to the alternate screen
Ignore

Right arrow

Left arrow

Up arrow

Down arrow

168

Program Usage
Display

3

APPENDIX C

Coding sheet for 8x8 pixel pattern code

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

169

APPENDIX C

Coding sheet for 16x 16 pixel pattern code

0 1 2 3 4 5 6 7 8 9 A B C D E

© 0 N oo o~ W N = O

m m O O w >

0 1.2 3 4 5 6 7 8 9 A B C D E

170

F

F

o

M m O O W > © 0o N o o »~ wWw N R

APPENDIX D

CRT LAYOUT COORDINATES

CRT Screen Layout Sheet (Characters)

EOT"CM(D*lD@NG)O)O—wwwhw&(DOSON%

m

Q
[es]

28

92 93 2 g3 3 93 98
g
98 2 92 93 9% 9w 93 99 88 9% g 3 N

2 8 ¥ g0 ¢
8 2

8
8

3
B

o
o

) 0
@ ®
IS IS
© 0
i© 0
@ ®

=}
2

Z o
o

7y - o O 100|Sm®0£awooxri‘lcn musgwwgww%y

171

APPENDIX D

CRT Screen Layout Sheet (Pixels)

172

APPENDIX E

KEYBOARD KEY CODES

Key Codes
/ C

® © © © @ ® © @ @ 1 ©6 ® I © (« 5 0O
-0 ® ©6 ©6 ©6 © © © ® ® © © © 18 1

H® © © 6 ©6 © © © © © © © (*“
——— H 0 [33]1 G41["s) I36) B7]1 B1 Bo) @0) @5) BE157) @g

These key codes are ascertained using INKEY(1)

The codes of the shaded keys are known using INKEY(1). If more than two of these keys are pressed
simultaneously, the sum of their key codes is returned. For example, if the FUNC and CTRL keys are

pressed at the same time, “3” is returned (2 + 1).

APPENDIX E

Alphabetic characters with SHIFT key not pressed

S00000-00 QIOO®{D ™ 1-
; ©00©D00 Qtd

Alphabetic characters with SHIFT key pressed

[nBksTs

RISl G k1), kU1 T)C-L
0d5)00 0 me o)

APPENDIX E

Graphic characters available with SHIFT key not pressed

Graphic characters available with SHIFT key pressed

175

APPENDIX F

POUT 1/0O TABLE

POUT Number
Z80CTC
01
02
03
VDP TMS9918A
1
1
1
10
10

TONE GENERATOR
20
KEYBOARD
30
31
32
33
34
35
36
JOYPAD/ATTACK BUTTON
37

RESET/HALT KEY
50

CASSETTE
RECORDER
50
50
50

PERIPHERAL
I/O
40
50
50

Summary

Channel #1.... peripheral timer
Channel #2 ... /0 clock
Channel 3 ... VDP

Status port

Screen base address and control port
VRAM address port

Data read port

Data write port

Tone generator control

Row 0
Row 1
Row 2
Row 3
Row 4
Row 5
Row 6

Input joypad direction
Reset/Halt key data port (bit 7)
Output port

Input port
Output port

Data output
Strobe output
Printer busy

176

APPENDIX G

MEMORY MAP

Memory map

Online main memory

0000
M5

(8 kB internal ROM)

2000
External ROM cartridge

(maximum 20 kB) ROM area
4000
6000
7000

4kB internal RAM
8000

4KB external
RAM

Extended external RAM

(maximum 32 kB) RAM area

FFFF

177

APPENDIX G

VRAM (video RAM) memory map

Layout |
0000
Free area
2000
Sprite pattern code table (2048
bytes— both screen buffers o and 1)
2800
Character pattern code table (2048
bytes— screen buffer o)
3000
Character pattern code table (2048
bytes— screen buffer 1)
3800
Character to ASCII relationship table
(768 bytes— screen buffer 0)
3B00
Sprite attribute table (128
bytes— screen buffer o)
3B80
Character color table (32
bytes— screen buffer o)
3C00
Character to ASCII relationship table
(768 bytes— screen buffer 1)
3F00
Sprite attribute table (128
bytes— screen buffer 1)
3F80
Character color table (32
bytes— screen buffer 1)
4000

Layout 1 remarks— applicable when
the 8 expanded screens are used
(uses addresses &0000 to &1 FFF)

178

Layout Il
0000
Gil mode color table (6 kB)
1800
Sprite pattern code table (2 kB)
2000
Gil mode pattern code table (6 kB)
3800
Pattern code table (screen buffer 0)
3B00
Sprite attribute table
3B80
Character color table
3C00
Pattern code table (screen buffer 1)
3F00
Sprite attribute table
3F80
Character color table
4000

Note: * signifies color table in other
than Gil mode

179

APPENDIX G

APPENDIX H

ERROR CODES

ERROR
CODE
ERR 1
ERRNF
ERR 2
ERRSY
ERR 3
ERRRG

ERR 4
ERROD
ERR 5
ERRIF
ERR 6
ERROV
ERR 7
ERROM

ERR 8
ERRUL
ERR 9
ERRBS

ERR 10
ERRDD
ERR 11
ERRDZ
ERR 12
ERRID
ERR 13
ERRTM
ERR 14
ERROS

ERROR SUMMARY
FOR .. NEXT error

Syntax error

Subroutine error

READ error in
DATA statement

Variable type
mismatch
Overflow

Memory exhausted

Missing line number

Array variable error

Array variable error

Division by O

Inappropriate direct execution

statement

Inappropriate data item

Stack overflow

180

REASON

FOR-NEXT does not correspond
Non-existent command

CLEAR used in the subroutine
Jumped to subroutine using a GOTO
GOSUB-RETURN does not corres-
pond

Insufficient data

Missing DATA statement

Wrong type of value given for
statement variable

When multiplying — answer is
correct but beyond the negative limit.
Program is too long

Too many variables

(reduce the number)

Too many subroutines

(reduce the number)

Missing destination for GOTO or
GOsuB

Error in array statement

Letter accompanying array variable
outside scope of the statement
Same variable set twice

Divided by zero

Wrong direct execution command
(execute wrong program)

Characters were provided when
numerics were expected, or vice versa
Stack space exhausted

No stack area left for the PAINT
statement

ERROR
CODE

ERR 15
ERRST

ERR 16
ERRUD
ERR 17
ERRDL
ERR 18
ERRTR
ERR 19
ERRDM
ERR 20
ERRSP
ERR 21
ERRNS
ERR 22
ERRUR
ERR 23
ERRTO

ERR 24
ERRRE

ERR 25
ERRDF

ERROR SUMMARY

Character string length error

Array variable error
Redundant label

Tape read error

Wrong screen display mode
Sprite error

Stack error

REPEAT..UNTIL error

Timeout error

RESUM error

INPUT error

181

APPENDIX H

REASON

» Character string too long or becomes
too long during calculation

 Substituted a character string larger
than the left hand variable

* Used an array variable which has not
yet been allocated

* Used the same label more than once

» Tape read error

» Reset during tape read operation

« Wrong screen mode chosen from
Gl, Gil, text or multi-color.

« Tried to see or move a sprite that
has been erased

» Does not occur.

*REPEAT..UNTIL does not match

* INPUT statement timed out

» Response not received from floppy
disk in time.

» Executed RESUM when no error

occurred

Pressed RETURN key without keying

in any data

ERROR
CODE

Error

Error
100

Error
101
Error
102
Error
103
Error
104
Error
105

Error
106
Error
107
Error
131
Error
132
Error
151
Error
152

Error
154

Error
155
Error
156

ERROR SUMMARY

SIO communications error

Channel unavailable

Specified channel not open

Channel already in use
Specified device already in
use

Improper file name

Improper access

Wrong file
Communications process
error

Improper drive number
Incorrect file name
Exceeded record

Data finished

No space on the disk

Too many files

Record not finished

182

REASON

* Wrong input data

« All channels in use— appears when
OLD, VERIFY, SAVE, or LIST are
attempted

e Channel may not be OPENed for
data input

* You have tried to allocate more than
one |/O device to a channel

* You have tried to use multiple chan-
nels with the ACMT

« Non-existent device

« File name too long

« PUT or GET used with a device
which cannot PUT or GET

* You have randomly accessed a
device which only handles sequential
access

* A file name already used cannot be
reused on the same disk

« Information transfer to disk not pro-
ceeding correctly

» The FD-5’s drives are humbered
Oand 1

 Zero-character file names are not
permitted with the FD-5

* You have tried to read or write
across more than one record

* You have attempted to read out data
which has not been input

» There is no empty field on the disk;
file may not be expanded. Unneces-
sary files may be erased with KILL

« The disk file capacity has been
exceeded. Capacity is 108 files

* You have randomly accessed a
record before access to the previous
record has been completed

ERROR
CODE

Error
160

Error
170

Error
171

Error
172

Error
180

Error

Error
182

Error
190

Error

Error
214

ERROR SUMMARY

No empty channel

No relevant file
File already in use
File already exists
Readout prohibited
Entry prohibited
Erase prohibited
Wrong disk

Panic

Abnormal sounds

183

REASON

* No more than four files may be
simultaneously OPENed with the
FD-5

*The specified file is not on the disk

« Specified file is in use on another
channel

*The file is already on the disk

* You have tried to read a protected
file

* You have tried to enter to a protect-
ed file

* You have tried to erase a protected
file

* The file has been transferred to
another disk

» Unexpected fault during normal
operations. Transfer from the disk
has possibly gone haywire

« Mechanical problem with reading to
or writing from the disk

Command or
Function

ABS (F)
ASCII (F)
ATN (F)
AUTO
BCOL
CALC (F)

CALL
CDBL (F)
CHAIN
CHR$ (F)
CINT (F)
CLEAR
cLIsT
CLOSE
cLs
COLOR
CONSOLE
CONT

cos (P
CURSOR (F)
DATA

DEL
DIM
DRAW
END

ERR (F)
ERRL (F)
ERRLS (F)
EVENT
EVENT ON/OFF
EXE (F)
EXP (F)
FOOL
FIX (F)
FOR..TO.. [STEP]
FRE (F)
GCOPY
GET
GINIT
GMODE
GMOVE
GOSUB
GOTO
HEX (F)
IF..THEN..ELSE
INKEYS
INP (F)
INPUT
INSTR (F)
INT (F)
KILL
LEFTS (F)
LEN

LEN (F)
LET

LIST

LN (F)
LoC
LOCATE
LOG (F)
MAG
MIDS (F)
NEW

Definition Abvr.

Remark statement or label Name ...
Returns absolute value of X

Returns ASCII code for first character of a string
Returns arc tangent of X

Automatic line numbering a...

Sets screen background color b...
Performs BASIC-F operations on an expression given as a [oF- TR
string

Transfers program control to a specific machine address ca...

Converts an integer to a real number

Retrieves program from tape or disk and executes
Returns character with internal code X

Converts a real number to an integer

Clears section of memory for PAINT/character buffer
Lists in upper case letters

Ends file usage

Clears screen
Sets up character color (Gl and Gil modes)
Enables/disables keyboard function keys

Restarts program after STOP or keyboard interrupt

Returns cosine of X

Moves curser to specified co-ordinates

Stores constant information used by program and accessed
by READ

Deletes lines from current program in memory

Allocates memory for an array

Draws a line on the screen

Indicates the end of a program and halts execution

Returns error code of the most recent error
Returns the line number of the most recent error
Returns line label of most recent error
Sets event timer interrupt interval
Enables/disables event timer interrupt.
Executes a BASIC-F statement having string representation
Calculates the function e*

Sets character color or graphics display color

Returns integer portion of X

Performs many iterations of a section of the program
Returns information on memory usage

Prints the current screen image on the printer

Reads data from channel to variable

Enters graphic mode

Sets up graphics display mode

Moves graphics cursor

Transfers control to a subroutine

Transfers program control to line number/label in statement
Returns hexadecimal equivalent of X

Evaluates the conditional expression

Returns current character from keyboard

Inputs a byte from aport
Assigns alphanumeric data from keyboard to variables
Searches string STR$ for first occurrence of string SUB$
Returns integer portion of a variable

Deletes files

Returns left substring of X$

Resets the maximum length of string variables
Returns length of character string

Assigns the result of an expression to a variable
Lists a file to another file, the printer or screen
Returns the natural log of X
Moves sprite-number to specified GR co-ordinates
Moves cursor to specified line and column
Returns log X to the base 10

Changes sprite size and format

Returns substring of X$ between X and Y

Clears the current program and memory CONtENES........cccveveiiriieiiiiieieeieeeeiee

184

Page

17
103
104
105

18

19
106

107
21
*108
109

23
24
25
26
27
28
110
29
30

31
32
33
34
111
112
113
35
36
114
115
37
116
38
117
39
40
41
42
44
45
46
118
47
119

48
121

49
123
50
124
51
52
125
53
54
126
55
127
56

Command or
Function

NEXT
NUMS$ (F)
OLD
ON ERROR GOSUB..
ON EVENT GOSUB..
ON..GOSUB..
ON..GOTO..
ON..RESTORE..
OPEN
ouTt
PAINT
PEEK (F)
PEEKW (F)
P (F)
PLOT
POKE
POKEW
PRINT
PUT
RANDOMIZE
RDSTS (F)
READ
RECORD
REG (F)
REM
RENUM
REPEAT
RESTORE
RESUME
RETURN
RIGHTS (F)
RND (F)
RPT$ (F)
RUN
SAVE
SCOD
ScoL
SG
SGN (F)
SIN (F)
SLEEP
SQR (F)
STCHR
STEP
STOP
SWAP
TAB
TAN (F)
TAPE
THETA
TIME <
TRACE

TYPE
UNTIL

VAL (F)
VARPTR (F)
VPEEK (F)
VERIFY
VIEW
VPOKE
VSAVE
WAIT
XCHG (F)

Definition Abvr. Page

Ends repeated executions initiated by FOR within aprogram | PP 57
Converts numeric value of X to character equivalent nu.... 128
Reads file from external memory 58
Transfers control to line number on error detection 59
Calls subroutine when event timer interrupt occurs 60
Evaluates expression and branches to nth line number.. 61
Evaluates expression and branches to nth line numbe 62
Sets data pointer to data group depending on expression. 63
Opens user files 64
Sends data byte by byte to a port 129
Paints area indicated by GR co-ordinates 65
Returns contents of memory address X 130
Returns 16 bits from CPU memory address 131
Returns the value of Pi............. 132
Displays dot at specified GR coordinates 66
Writes data directly into specified memory locations... 67
Writes data to CPU memory 68
Puts text in screen display buffers 69
Assigns binary form to a variable and executes it 70
Resets the seed for the random number generator 71
Reads statement indicated by cursor 133
Loads data from DATA statements into variables 72
Record to be next assigned 73
Returns register value after CALL is executed 134
Stores programmer comments within the program 74
Changes the line numbering of the program 75
Sets up a loop ending in a logical test ja
Resets data pointer for data item groups in DATA statements 77
Bypasses an error 78
Returns program control after GOSUB has been called 79
Returns substring from right side of X$ 135
Returns a random number between 0 and X 136
Returns a string of repetitions of X$ 137
Executes the current program 80
Writes to external memory 81
Assigns numeric code to sprite-number 82
Colors sprite-number 83
Activates tone and noise generators 84
Returns sign of X 138
Returns the sine of X 139
Stops execution for specified sleep time Si... 86
Returns square root of X 140
Assigns pattern-code to character-code 87
Stops/resumes execution at statement change 88
Halts execution of a program from within a program 89
Transfers contents of variables 90
Tab over X characters 91
Returns tangent of X 141
Accesses assembler supplied on external memory 92
Sets mode for trigonometric functions to degrees/radians 93
Returns time since powering up in seconds 142
Displays trace of executed line numbers during program | E SRR 94
execution

Defines the type of a variable 95
Marks the end of a repeat loop 98
Converts a character string to its numeric equivalent 143
Returns the actual memory address of a variable 144
Returns contents of video memory at X 145
Compares programs in memory 97
Creates a viewport on the display screen 98
Outputs data to the video memory 99
Writes video RAM data to tape 100
Limits time computer will wait for input from keyboard j01
Swaps order of upper and lower bytes of X i46

185

SORD COMPUTER CORPORATION
SAITO BLDG. 2F, 14-6, KYOBASHI 3-CHOME,

CHUO-KU, TOKYO 104, JAPAN

PHONE: (03) 562-6061

TELEX: 2522745 (SORD J)

GDE-0083-1 (87100675) 1513 Printed in Japan June 84'NK

