
Creative Computer

2nd ED.

Easy BASIC for Science
-

Copyright © 1984 by SORD COMPUTER CORPORATION
All rights reserved. Printed in Japan.
No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written
permission of SORD COMPUTER CORPORATION Japan.

Contents

Chapter 1 In troduction..2
1-1 Getting Started...2
1-2 BASIC-F and other BASICS..3
1 -3 BASIC-F Variable Types and Numerical

Representative..3
1 -4 BASIC-F Operating Environment.......................................3
1-5 BASIC-F Files and Disk System...4
1-6 Using Disk Files..5
1- 7 Using Peripherals..6

Chapter 2 General Description...8
2- 1 Screen Control..8
2-2 Screen Buffers and Graphics Modes..................................9
2-3 The M5 Keyboard..10
2-4 Editing.. 10
2-5 Graphics Modes... 11
2-6 Programming Style.. 11
2 - 7 Statement Syntax..13
2-8 Sound... 13
2- 9 Use of Keyboard and Printer.. 14

Chapter 3 Basic Commands... 16
3- 1 Functions... 102

Chapter 4 Appl ications Section..147
4- 1 Loan Payments... 148
4-2 Initial Investment... 150
4-3 Regular Deposits... 152
4-4 Future Value of Regular Deposits (Annuity)..................... 154
4-5 Remaining Balance on a Loan......................... 156
4-6 Prime Factors... 158
4-7 Long Number Arithmetic... 160

Appendix A Character Codes... 164
B M5 Color Codes.. 167
C M5 Control Codes... 168
D M5 CRT Layout Sheets.. 171
E Keyboard Codes... 173
F Port Assignment Table... 176
G Memory Maps... 177
H Error Codes.. 180
Commands and Function Index..184

Preface
This manual will be read by individuals with a wide range of skills.

It is intended primarily for those who are familiar with computers
and have used a BASIC language before. We have nevertheless
tried to anticipate the needs of as many people as possible. At times
this manual will appear too simple and detailed and at others too
complex. Please bear with us when the manual doesn’t match your
personal expertise exactly. We hope that this manual will be helpful
and easy to use. Please feel free to send us your comments and
suggestions.

Parts one and two of this manual cover the basic capabilities of
the M5 and BASIC-F, such as screen functions, files, and arithmetic.
Part three contains individual explanations of each BASIC-F state
ment, function, and system command, arranged alphabetically each
with a short example. The fourth section contains a set of useful ap
plications programs which demonstrate the various features of the
M5.

1

Chapter 1 Introduction

1. Introduction
Welcome to SORD’s BASIC-F. In this section we will describe the

way to set up your M5 to run with BASIC-F. We will also give a brief
description of the overall difference between BASIC-G and BASIC-F.

1.1. Getting Started
If your M5 is not assembled and running look at the figure below.

Connect the various components as shown and power up your com
puter! Make sure that the BASIC-F cartridge is properly inserted
before turning the power on.

Your M5 is now ready for use. The top left corner of your screen
should display:

BASIC-F
READY
L

If it does not display this message, turn the power off and check
all the connections between components in your system.

2

Chapter 1 Introduction

1.2. BASIC-F and other BASICS
BASIC-F is an enhancement of BASIC-I, which also contains

some of the important graphics features of BASIC-G. The most im
portant difference is the inclusion of floating-point arithmetic. With
BASIC-F you can perform all kinds of mathematical calculations.

1.3. BASIC-F Variable Types and Numerical
Representation

BASIC-F has integer, real and string variable types. Constants
may also be expressed in hexadecimal. Integers are represented in
ternally by sixteen bits in two’s complement form, giving a range of
-32768 to 32767. Floating-point numbers range from ± 8 .6 E -7 8
to ±7.2E—75.

Arithmetic follows this operator priority:

(,) comma
functions
exponent
sign
* , /
MOD
+ > —
relational operators
logical operators

We recommend that programs enforce all operations with paren
theses. This removes confusion, improves readability, and prevents
errors when programs are transported to and from other systems
where operator precedence may be different or unknown.

Thus, example A is recommended over B even though they are
arithmetically equivalent:

A) X = (2 * C) + 4
B) X = 2 * C + 4

1.4. BASIC-F Operating Environment
BASIC-F has two operating environments: a program creation

/edit mode and a program execution mode. Programs are ex
ecuted, in the operating mode, simply by typing RUN.

3

Chapter 1 Introduction

Programs written in BASIC-G can be transferred to BASIC-F by
using the LIST command to create a tape of the program listing. To
access the stored program, use the I NT command, followed by
RETURN, then transfer the program with the OLD command. When
there are no reserved words in BASIC-F an error will occur and
tape read-out will end.

Once a program is transferred it can be run in both BASIC-G
and BASIC-F, and can be saved in any form. Note, however, that
language-dependent commands such as floating-point operations
and graphics will have to be modified after transfer.

1.5. BASIC-F Files and Disk System
BASIC-F can use data files to store and retrieve information. The

file system is similar to that found on larger SORD computers with
advanced operating systems, but, since the disks used are 3-1/2
inch media, the files are not interchangeable with these machines.

When you use SORD’s FD-5 Floppy Disk Drive Unit with the M5
and BASIC-F, you need a number of commands which are not strict
ly speaking BASIC-F commands. These are not included in the list in •
Section 2 of this manual, but are described in detail in the CF-5/S
Operating System Manual. A brief description is given below.

The disks are used to store both programs and data in units call
ed files. A list of which files are on a disk is itself stored on the disk.
When you wish to see what files are stored on a disk you must re
quest that this list be displayed on the screen of your M5. To do this
the command used is RUN” LIST. When you enter RUN” LIST the
M5 will request that you enter the unit number of the disk that you
wish listed. After you give the number, the list of names will be
displayed on the screen. You will also be shown how much space
on each disk is in use and how much remains. Along with each file
name some file attributes will be displayed, such as the file type,
and the file size.

Before a new disk can be used, the computer must prepare it.
This process is called disk initialization. The command to prepare a
new disk for use is RUN” INIT. RUN” INIT clears the disk of any ex
isting material and creates an empty list to receive the names of
the files that you will place on the disk.

Since disks may be damaged by accident or by errors in your
programs, it is wise to copy disks so that you have extra copies. It
is also necessary to copy files for other reasons, and so BASIC-F
allows you to copy one disk to another. The command is RUN”
COPY.

4

Chapter 1 Introduction

Each file that is stored on a disk has a name. It may be desirable
to change the name of a given file from time to time. A command
called RUN” RENAME is supplied to do this. When you enter this
command, you must supply the old name of the file and then the
new name. The computer will prompt you for each of these names
separately. Each name may be up to 9 letters long.

Each file also has several attributes. These attributes change
the way that the computer can use the files. These attributes are
represented by the letters A, P, R, and W. The command to change
attributes is RUN” CHATR. The attributes are fully explained in the
CF-5/S Manual.

To use any of these SEVEN commands, just type it as it has
been typed above. Then enter RETURN. The M5 will prompt you for
each input required to complete the command.

1.6. Using Disk Files
With the disk system it is possible to use the disk for storing data

as well as programs. The procedure is essentially the same as in
putting from the keyboard and outputting to the display, but a few
descriptors are needed to specify the file. We will now describe
how to use data files from within a program.

Data files can be thought of as large arrays which are stored on
the disk instead of in memory as regular arrays. Instead of just
numbers or strings, each cell of a file can contain a block of infor
mation, and each block can be different in form from others. Before
we can use a disk file, we must tell BASIC-F that we intend to do so.
This is similar to using the DIM statement for arrays. The command
to do this is OPEN, and it tells BASIC-F to open access to a file of a
given name. It also associates the file with a channel number.
Channel numbers are always used to refer to the file after it is
OPENed. This allows you to write programs without knowing what
the files are called, and it allows one program to process many
different files. The OPEN statement may be used with a variable
name for the file name so that it can be changed at run time. The
channel numbers are 0 to 15 so up to 16 files may be accessed at
once. Channel O is usually used by the console. When processing
is complete, you must CLOSE the file with the CLOSE command.

To use OPEN with the screen display, keyboard, or printer, the
format is:

OPEN “ descriptor” as # channel no.

For outputting characters to a graphic display or printer see
elsewhere in this manual.

5

Chapter 1 Introduction

To use OPEN with a cassette unit or floppy disk drive, the format
is:

r input
OPEN “ descriptor” for J output

* append
as # channel no.

‘Input’ is used when you want to read data from a file and ‘out
put’ is used when you want to write data to a file. ‘Append’ is used
when you want to add data to an already existing file, but is only
applicable with the disk system.

To use OPEN with random files on disk, the format is:

OPEN “ descriptor” as # channel no. record record length

The format for the CLOSE statement is:

CLOSE # channel no.

Many channels can be closed at the same time by specifying their
numbers, separated by commas.

If CLOSE only is executed, all OPEN files will be CLOSED. Be
sure to CLOSE all files when you are finished using them. After
CLOSEing disk files perform a disk update.

When accessing a cell of an array, we use a special notation:
square brackets with an index number following the name of the ar
ray. There is a special notation for files as well. To get the informa
tion out of a file cell, we use the GET command. To put information
into a cell of a file we use the PUT command. Cells in a file are nor
mally referred to as records. Each file in BASIC-F can have up to
65535 records.

1.7. Using Peripherals
Besides the floppy disk drive, you can access a variety of

peripherals using BASIC-F. The following table gives the standard
abbreviations for your peripherals.

Name Output Device Input Device
• CNS (Console) Character display Keyboard

GRP (Graphic) Graphic display
PRT (Printer) Character printer
PRI (Image) Image printer
CMT (Cassette) Audio cassette tape

Floppy disk driveFX (File)

6

Chapter 1 Introduction

To operate your cassette tape, printer, or display the procedure
is much the same as the procedure for using the disk drive as
outlined in the previous section. You use the OPEN and CLOSE
commands, and if appropriate to the peripheral, you can utilize
PRINT, INPUT, SAVE, OLD, CHAIN, and LIST.

In BASIC-F all data inputs and outputs are carried out at the level
of files. To operate the peripheral you need to use a special file
name called a descriptor. The form of the descriptor is as follows:

Device Name Device Number Drive Number: File Name

A drive number need only be used with a disk drive; device
number is significant only with the disk drive. Channels available
range from 0 to 15, but as it is usual for the console to use channel
0, in practice 1 to 15 are available. File names must be no more
than 9 characters in length. Thus to use OPEN with your printer, for
example, the format is as follows:

Open “ Descriptor” as # Channel Number

With a disk drive or cassette tape the option to add to your data
exists, so the format is a little different:

OPEN < file name> [for {input|output|append)] as # <C H >
[Record < record length >] {OR | :)

The format for the PRINT command is as follows:

Print [# < channel number>] < expression>,... {CR|:}

With disks or cassette tapes only files which have been OPENed in
the manner described above can be PRINTed. The format for the
INPUT command is as follows:

INPUT [< prompt> 1 # <channel num ber>]{,|) <variable> [,..]
(CR|)

You can LIST programs on the printer with the format:
List “ PRT” Return
This format uses the characters integral to the printer; to print

out just like on the screen use:
List “ PRI:” Return

7

Chapter 2 General Description

2. General Description
In this section we will describe the special features of the M5.

The M5 has many special features which are different from other
computers. These include the M5’s special graphics capabilities and
music and sound generation. Used together, these features allow
you to create advanced programs on the M5.

2.1. Screen Control
The M5 computer uses memory mapping for the display screen.

The computer display screen is represented by a complete block of
memory. When you type a character, the M5 places the character
in the video memory and the circuitry of the M5 places the image
on the screen, where you can see it. A powerful feature of the M5 is
that it has two such video memory buffers. This allows you to ‘type’
on two screens or to write to two different places. A simple command
will tell the M5 to change which of the two buffers will actually be
shown on the screen. When one is displayed the other video buffer is
preserved exactly. The computer can switch between the two
displays quickly without any screen flicker or noise.

This feature is extremely powerful and allows the development of •
very useful interaction environments. For instance, a program could,
when requested, display help information on a second screen allow
ing a user to request help, receive it, and continue using the program,
all without disturbing the display of the original program!

8

Chapter 2 General Description

2.2. Screen Buffers and Graphics Modes
DISPLAY CONTROL

The M5’s two screen buffers are referred to as ‘screen 0’ and
‘screen 1’. When the computer is turned on, screen 0 is displayed.
At any time screen 0 may be displayed either by PRINTing a ‘con
trol U’ or by typing it from the keyboard.

To change to the ‘other’ screen type PRINT CRTL-V. CTRL-V
always causes the screen to change. If the screen now displayed is
screen 0 then it will change to screen 1. If it is screen 1 then it will
change to screen 0.

WRITE CONTROL
On most computers with only one display screen, any text typed

from the keyboard will go directly to the screen. On the M5, text
entered from the keyboard can go to either of the screens. This can
result in some confusing situations, so be careful!

When the M5 is turned on, screen 0 is displayed, and all text is
displayed on that screen, like a normal computer. The M5 can be
instructed to put text on the hidden screen by PRINTing or typing
a CTRL-Z. CTRL-Z is the WRITE TO HIDDEN SCREEN command.
If screen 0 is visible, the text will go to screen 1 and if screen 1 is
visible the text will go to screen 0. The M5 maintains a cursor posi
tion for each screen. If text is written alternately to one screen and
then the other and back again, it will be as if the text had been
entered separately on each screen.

The M5 also has the ability to flip screens and write control at the
same time. This allows the user to look at the hidden screen and
continue to type on the previous screen. For example, if the user is
typing on screen 0 but needs some information .from screen 1, the
user can display screen 1 but continue typing on screen 0. This is
done with CTRL-Y. Notice that this command is actually redundant,
the same effect being achieved with CTRL-V, CTRL-Z.

TABLE OF WRITE CONTROL COMMANDS
CODE DEC HEX effect

CTRL-Q 20 14 multicolor
CTRL-R 18 12 Gil
CTRL-S 19 13 Gl
CTRL-T 20 14 enter TEXT mode
CTRL-U 21 15 display screen 0
CTRL-V 22 16 display alternate screen
CRTL-Y 25 19 display alternate screen and

write to hidden screen
CTRL-Z 26 1A write to hidden screen

9

Hr

Chapter 2 General Description

2.3. The M5 Keyboard
The M5 has several features which make programming easier.

The keyboard has several control functions which save typing time.
The following table summarises these functions:

CTRL-C
CTRL-D
CTRL-E
CTRL-F
CTRL-H
CTRL-1
CTRL-J
CTRL-K
CTRL-0
CTRL-P
CTRL-X
CTRL-up
CTRL-down
CTRL-left
CTRL-right
CTRL-reset
SHI FT-reset

-shift screen down
-shift screen left
-shift screen up
-shift screen right
-delete previous character
-tab
-move cursor down
-cursor home
-exit insert mode
-enter insert mode
-clear to end of line
-move cursor up
-move cursor down
-move cursor left
-move cursor right
-interrupt program execution
-stop program execution permanently

These functions can be utilized by typing them into the M5 from
the keyboard directly, or by a program using the PRINT statement.
When used in a PRINT statement, they must be enclosed in dou
ble quotes as part of a string. Furthermore, you must indicate to
the M5 that you wish to use the control code but not execute it im
mediately. This is done by typing ‘SHIFT-CTRL-letter,’ all at once.
This tells the M5 that you wish the PRINT statement to use the cor
rect code but that it should not be used now. When this is done, the
controlled character will be displayed in reverse video.

2.4. Editing
These commands are often useful when editing. Naturally, when

typing in programs, errors will occur. The M5 has several screen
editing functions which facilitate error correction. When an error is
discovered it is not necessary to retype the entire line. When the line
containing the error is displayed on the screen, the arrow keys can
be used to move the cursor directly to the position of the error. The
error can then be corrected right on the screen. When the correc
tions have been made, entering a ‘CR’ will tell BASIC-F to enter the
new, corrected line into the program.

10

Chapter 2 General Description

The other control keys are also useful when editing. For instance,
CTRL-X will delete the characters all the way to the end of the line.
CTRL-N will move the cursor to the beginning of the next line.
CTRL-H will delete the character under the cursor, anywhere in the
line. CTRL-P will allow you to insert new characters into the line and
CTRL-0 will exit insert mode. At first these functions may seem con
fusing and time consuming, but with practice they speed up program
ming considerably. The screen also has cursor wrap around. This
means that if you move past the edge of the screen the cursor will
reappear on the opposite edge. This can save time if you have to
move the cursor a long distance.

2.5. Graphics Modes
Under BASIC-F some of the graphics capabilities of BASIC-G

have been retained. Graphics are facilitated through the inclusion
of several commands such as DRAW, PLOT, PAINT, and COLOR.
These are described in the command section of this manual. Here
we will only describe the characteristics of graphics in the M5.

The M5 implements graphics through the use of different screen
modes. Recall that the M5 has two screens. Each of these screens
can be set to different modes. Under BASIC-F there are four such
modes. Each screen mode has different properties which facilitate
different tasks.

In TEXT MODE (G1) the screen can display 24 lines of 40
characters at once. Each character is composed of 48 dots in a
6x8 font. TEXT MODE is set for either screen by PRINTing or typing
a CRTL-T.

An alternate screen mode is G2. Graphics cannot be displayed,
but more characters will fit on the screen. The M5 is in G1 mode
when first powered up.

mode font
Gl 8 x 8 32x24
Gil 8 x 8 32x24
Text 6 x 8 40|x24
Multi 8 x 8 32x24

2.6. Programming Style
BASIC-F includes features which can make your programs easier

to understand and debug. Programs in BASIC-F can be more clearly
written, easier to debug and more efficient. They can also be stylisti
cally superior. Features include:

11

Chapter 2 General Description

-labels for branching
-indenting of code
-a REPEAT command

BASIC-F has the ability to indent lines of program text. In the
following example the inside of the loop is indented.

Labels can be attached to line numbers. This allows routines also
to be given mnemonic names. A mnemonic name relates a name to
the function of the routine itself. This allows a reader to see quickly
what a section of a program is supposed to do. Labels can be used
with GOTO, GOSUB, and RESTORE in BASIC-F.

BASIC-F has the ability to indent lines of program text. In the
following example the inside of the loop is indented.

Labels can be attached to line numbers. This allows routines also
to be given mnemonic names. A mnemonic name relates a name to
the function of the routine itself. This allows a reader to see quickly
what a section of a program is supposed to do. Labels can be used
with GOTO, GOSUB, and RESTORE in BASIC-F.

Within REPEAT and FOR loops, code should be indented two or
three spaces to make programs more legible. This shows which in
structions are within the scope of a given loop. For example:

100
110
120
130

t o r 1=1 t o 100
9 o s u b $ GETURL
9 os u b fDOPRQC

n e x t I

This clearly shows which commands belong inside the loop and
where the loop ends. This is a great aid to debugging and under
standing programs. For this reason, BASIC-F does not remove the
extra blanks as do some other BASICS.

The REPEAT command should be used whenever a counter is not
required for a loop. This reduces the number of variables used, and
thereby improves readability and saves both memory and memory
accesses. REPEAT loops are always executed at least once, since
the test for looping occurs at the end of the loop. Code should also
be indented in the REPEAT loop. For example:

100 r e p e a t
110 9 osub fGET INPUT
120 9 o s u b ^PROCESS
130 u n t i l DQNEf="TRUE"

12

Chapter 2 General Description

Older BASICS allowed variables to have one letter and one num
ber as names. Modern BASICS such as BASIC-F no longer have
this restriction. It is good programming practice to make your var
iable names meaningful. Using mnemonics helps debugging and
understanding programs. In BASIC-F variables may have names
consisting of up to 32 alphanumeric characters. Of course, names
that are too long also increase the likelihood of typing and reading
errors, remember to keep a balance.

2.7. Statement Syntax
Each line of a BASIC-F program begins with a line number. These

line numbers range from 1 to 32,767 Each line may contain several
BASIC statements separated by full colons, Each line may be up
to 252 characters in length.

After a line number any BASIC statement may occur. Also, after
a line number, but not a colon, a label should occur. The label must
begin with a dollar sign '$’, and no blanks should occur between
the line number and the label name. The label can then be used by
other BASIC commands to refer to the line number. When referring
to the label the dollar sign must be included.

A special statement, called a comment, may also appear on a
line. When a comment appears, no other BASIC statements should
occur after it on the line. A comment and anything after it is always
ignored by BASIC-F. A comment is indicated by the keyword REM,
an exclamation mark T , or an apostrophe

The syntax of all other statements and commands is explicitly
defined in this section of the manual.

2.8. Sound
The M5 has a SN sound generation chip. This gives the M5

the ability to produce sound effects. These functions can be per
formed from BASIC-F for use in any program.

To produce sounds, the M5 contains three tone generators and
one noise generator. These can be used singly or in combination to
produce a wide variety of sounds. BASIC-F has one command to
control all four of these sound generators. The command is SG and
it has three parameters: the channel, the frequency and the volume
of the sound to be produced. The second parameter describes the
type of noise to be produced when accessing the noise generator.
The comand is as follows:

SG channel, frequency, volume

13

Chapter 2 General Description

The sound channels are 0,1, and 2. The noise channel is number
3. The frequency value is specified as a value from 1 to 1023. For
any given value the frequency is calculated as follows:

frequency = 111.86 (khz)/desired frequency

For example, a middle C on a piano is'261.6 (Hz). Thus:

code value = 111.86 (khz)/256
= 428

and:

SG 0,428, 15

will produce a pure middle C from your TV.
When the channel specified is 3, the noise generator is accessed.

The noise generator produces eight types of noise from 0 to 7.
When used in combination with channel 2, interesting sounds can
be produced.

See the command section for more information about SG.

2.9. Use of Keyboard and Printer
The printer port on the M5 can be used to connect several prin

ters to your computer. With dot matrix printers, the M5 can print out
graphics images from the screen as well as text and program
listings.

Be sure to read the instructions with your printer before connec
ting it to your M5. If you have problems contact your dealer.

The M5 connects to printers via a parallel port. This requires a
special cable for the connector on both the printer and the M5.

The printer is used for two main purposes: to print out program
listings and to produce ‘hard copy’ output of programs written on
the M5. Program listings are produced by the LIST command and
its variations. For further information on these commands see the
command section of this manual.

Two kinds of hard copy output can be produced by the M5. One
is standard text, such as found in letters and reports. The other
form of output is graphic images. Text is output directly to the
printer with variations of the PRINT command. See the command
section for further information.

14

Chapter 2 General Description

Graphics images are sent to the printer with the GCOPY com
mand. Again, see the command section for further details. Graphics
images can only be printed on dot matrix printers.

15

Chapter 3 Basic Commands

3. Basic Commands
In this section we provide a list of all BASIC-F statements

and system commands arranged alphabetically. Each state
ment has a small example shown in isolation; for more examples
see the section of applications programs.

The FORMAT part of the statement descriptions is read as
follows:

(CRI:) means that the statement can be ended with either a
carriage return or a full colon and another statement.

[] indicates that the component in braces is optional.
[,..] indicates that the previous component is optionally

repeatable.
| either of two options can be used.
< > the word(s) inside the brackets refer(s) to a single

object.

16

$
FORMAT:

FUNCTION :

Comments:

Example:

$< label name> {CR |:}

Remark statement or label-name.

Up to 32 characters in length; the $ must be situated next
to the line number.

1 0 0 ‘3 o t o $ S U 8

i 0 0 0 ■$ S U 8

17

AUTO
FORMAT : AUTO [< first line number>] [,< increment >]

FUNCTION : AUTOmatic line numbering when writing a program.

Comments: When entering a program, AUTO will put a line number on
the screen after you complete each line. AUTO sometimes
conflicts with the natural progression of programming by
enforcing an artificial regime on the order in which code is
entered. The use of this command is a matter of personal
style.

Example: fl U T 0 1 0'Q ? 2 0
10 0 a = 1
12 0 b = 2
14 0 c = a + b
1 6 0 P r i n t- c

18

BCOL
FORMAT : BCOL [< color code>] {CR

FUNCTION : Sets the background color of the screen.

Comments: The default color code is 0, no color. If the color code is
the same as that for characters (FCOL) then characters
will be invisible. See Appendix B for the color codes.

Example: 1 0 ’ BCOL T EST
2 8 ’
3 y f o r 1 = 0 t o 10
4 0 b e o 1 I
4 5 c 1 s : P r i n t c u r s o r (15? 1 3) J I
5 0 s l e e p 1
6 0 n e x t I
7 0 b c o 1 0

19

CALL
FORMAT:

FUNCTION :

Comments:

Example:

CALL < address > [,<AF registers >] [,<BC registers >]
[,<D E registers>] [,<H L registers>]

CALL transfers program control to a specific machine
address, after leaving the return address on the stack.

This command is used to call machine language routines.
These can be part of the M5 monitor, or written by the
user. When the machine routine executes a RET instruc
tion, control is returned to the BASIC-F program. After the
return, the following registers are stored in the following
memory locations:

PSW : &7262
A : &7263
B : &7265
C : &7264
D : &7267
E : &7266
H : &7269
L : &7268

Caution should be exercised with the use of CALL. Always
save your program to disk or tape before testing a program
with a CALL. Often the contents of the machine memory
will be altered and your program will no longer even LIST
properly. On the other hand, machine routines will run very
fast, often 300 to 1000 times faster than a BASIC routine
which performs the same function. Thus if speed is requir
ed, the CALL function may be necessary. (Also it can set
the values to the registers; see the REG function.) You
should however refer to a machine language manual for
the proper use of this statement.

10 9 o s u b $SE TRGU
20 C a 1 1 RDDR ESS ?
30 e n d
40 $ S E T R 0 UTI NE
5 0 fiDDR ESS = & 0 C 9 7
60 B CRE G = & 0 5 00
70 r etu r n

20

CHAIN
FORMAT : CHAIN [< file-name >] [, all] |CR

FUNCTION : Retrieves and executes a program stored on tape or disk.

Comments: A statement on the same line as a CHAIN command,
separated by a will never be executed. The variables
and values of the current program are lost. And by setting
[all], the variables and values will remain as is.

Example: 1 0 6 P r i n t " D o n e "
1 1 0 r h a i n " P R 0 G 2 "

21

CLEAR
FORMAT: CLEAR [<w ork field >] [, < last user field >] {CR

FUNCTION : Clears a portion of memory for use as a PAINT and
character buffer. Memory is freed in 256 byte blocks.
The second parameter sets the highest memory location
used by the program.

Comments: The top of the memory field is below the buffer, and
prevents the program from running into it as it uses
memory.

Example: 1 0 0 c l e a r 5 1 2 j &8 F F F

22

CLIST
FORMAT : C LIST [< file nam e>] [, < line number 1 >]

FUNCTION :

[, < line number 2 >] {CR |:}

Lists a program in upper case only.

Comments: This function is identical to LIST except that all lower case
letters are converted to capitals before printing.

Example: 1 V i* '='!-'•=* -:d t- 1
28 f i $ = i n k e y $
25 P r i n t a s c i i CH$> 1
39 u n t i l Pi f = c h r $ < 1 3) 1

c l i s t 1
10 RE PERT
2 0 A $ = I N K E V $
25 P R I N T A S C I I <A$>
3 0 1JN T I L A$ = CHR$< 1 3)

23

CLOSE
FORMAT : CLOSE [# < channel no.>] [CR

FUNCTION : Ends usage of user file.

Comments: If the channel number is omitted, all channels will stop.

Example: 1 9 0 oP en " PR T : 11 a s # 2
1 1 0 p r i n t # 2 " '3 o o d "
12 0 c 1 o s e # 2
1 ■ j y e n d

24

CLS
FORMAT:

FUNCTION :

Comments:

Example:

CLS [< initialize code>] {CR |:j

Clears the screen.

The initialize code may specify the character code which
will fill the screen. This is normally a null.

C 1 S

1 i 0 p r i n t " T h i s i s t h e t o P o t t h e
S C*r" 8 0 i“i "

25

COLOR
FORMAT : COLOR < character-code > , < color-code>

FUNCTION : Sets up the character color in the Gl and Gil modes.

Comments: The higher-order four bits indicate the character color and
the lower-four bits designate the background color, or

color-code = character - color x 16+ background-color
or
color-code = & HL (H = character-color, L = back
ground-color: H, L are hexadecimal)

• The Gl mode— each time a character is colored, it ac
tually affects seven other characters with contiguous
ASCII codes (If the 16x16 ASCII table is split into upper
and lower halves, each half contains columns of eight
characters. These eight are colored identically).

• The Gil mode— each character is colored individually.

Example: c o 1 o r 6 3? & y 0

26

CONSOLE
FORMAT: CONSOLE [< A >] [, < B >] [, < C >] [, < D >] [, < E >]

[, < F>] [, <G >] {OR |:j

FUNCTION : Enables/Disables keyboard function keys.

Comments:
Function 0 1

A Keyboard
sounds OFF ON

B Generate key
board keywords

OFF ON

C Display page page 0 page 1
D Process page page 0 page 1
E Display mode 0 : M, 1 : G2, 2 : G1, 3 : T
F Screen lock
G ACMT Baud
rate 33 = 2,000 Baud

Example : c o n s o l e 8 , , 9 , 9 , 3

27

CONT
FORMAT: CONT {OR

FUNCTION : Restarts a program after it has been interrupted by a STOP
command or a keyboard interrupt.

Comments: CONTinue will not work after an END command has been
executed. By entering STOP commands while testing a
new program, the programmer may check individual
sections of a program for errors.

Example: 1 0 0 p r i n t- " H e r e w e a r e ? . . . "
1 1 0 s t o P _
1 2 0 P r i n t " H e r e we 9 o ? . . . "
1 3 0 e n d
r u n
H e r e we e r e ? ■ ■ ■
S t o P a t 1 1 0
R e a d y
c o n t
H e r e we 9 o ? • • •
R e a d y

28

CURSOR
FORMAT : CURSOR (X, Y)

FUNCTION : Moves the cursor to the coordinates specified by (X, Y).

Comments: A s e m i c o l o n i s usually used after this keyword.

Example: 1 0 8 P r i n i c u r s o r (1 5 ? 1 0 } ; 11 G Q M £ Q f

29

DATA
FORMAT:

FUNCTION :

Comments:

Example:

DATA < constant > (CR |:j

Stores constant information to be used by the program and
accessed via READ.

Data may be numerical of any type, or character data. Col
lect DATA statements near the end of the program. When
using disk systems keep DATA use to a minimum as they
occupy valuable memory. Instead keep the information on
a file.

10 e ls
20 -For 1=0 to 7
30 read
40 p r in t R$,
50 next I
100 data 12 ,24 ,1955 ,Smith
110 data 3 ,7 ,1 9 4 2 ,Jones

30

DEL
FORMAT: DEL [< line number 1 >] [, < line number 2 >] (CR | :}

FUNCTION : DELetes a line or lines from the current program in
memory.

Comments: Be careful when entering two line numbers not to delete
entire blocks of code from a program.

Example: 1 0 0 r 0 nr* ft 8 C D E
1 1 8 r e m t 9 h i ■j
1 2 0 r e m k 1 rn n o
1 3 8 r e m P r s t
14 0 v e m IJ U W X V z

R 0 a d y
d e l 1 1 0 , 1 3 0

R 0 a d y
l i s t
i 0 0 r 0 rn ft 8 C D E
1 4 0 r e rn UUI..JXV z

R 0 a d y

31

DIM
FORMAT:

FUNCTION :

Comments:

Example:

DIM < array name> (<array size>[,...]) [,...] {CR |:}

DIM allocates memory for an array.

A DIM must be executed before an array is used. Each
DIM statement must only be executed once. It is not legal
to change the DIMensions of an array after it has been
declared. An array can use up a large amount of memory,
so care should be taken to allocate only as much as is
needed. (Max. 255 dimension is possible, it does not in-
elude 0 dimension)

i 0 0 d i m O < 5 >

ina:

1 1 0

i~4IIhH0 t. O 5
1 2 0 ft < I > = 1 + 6 4
1 3 0 0 $ < I) = c h r $ < fi (I)
1 4 0 n e x t. I
1 5 0 t o r J = 1 t o 5
1 6 0 P r i n t 0 < J > 7 fl $ (J
1 7 0 n e x t
1 8 8 e n d

r u ri
6 5 0
6 6 g
6 7 c
6 8 D
6 9 E

R e a d y

DRAW
FORMAT : DRAW <GR-coordinates>[,<GR-coordinates>] {CR |:}

FUNCTION : DRAWS a line on the screen.

Comments : If only one pair of coordinates are given then the line will
be drawn from the current graphics-cursor position, and
the graphics-cursor becomes the end of the line. If two
pairs of coordinates are given they specify a line and
the graphics-cursor does not change position.

Example: >"1 Pi P r i n t "W3W“ s 9 in i t
1 0 d r a w 1 Pi Pi , 5 0 , i 0 0 , 1 0
2 9 9m o m e 5 0 ? 1 0 0
3 0 d r a w i 9 0 ? 1 5 ©
4 0 d r a w 2 0 0 ? 1 3 0 ■ 1 0 0 ? 0
5 0 P r i n t " W

33

END
FORMAT:

FUNCTION :

Comments:

Example:

END [CR |:}

Indicates the end of a program and halts execution.

Once the END instruction is executed, execution cannot
be resumed with CONT. This instruction is not strictly
necessary. (All of the channel will be closed)

1 8 0 0 P r i n t " T h i s i s a u e r y s h o r t.

P r o '3 r a rri "

i 0 1 0 a nd

r u n
T h i s i s a v e r y s h o r t P r o 9 r a m

R e a d y

34

EVENT
FORMAT : EVENT < interrupt-interval > [, < delay-time >] {CR |:}

FUNCTION : Sets the interrupt interval accessed by the ON EVENT
GOSUB statement.

Comments : The interrupt-interval is the interval between consecutive
event timer interrupts that can take on values between 0
and 255 (number of 1/60 second units). Be careful since
0 is assumed to be 256 time units. The delay-time is the
delay time until the first event timer interrupt and can take
on values from 0 to 32767 (1/60 second units). 0 is assum
ed to be 32768. Unless otherwise specified, the first event
timer interrupt occurs immediately after setting the event
timer interrupt-interval. If negative values are specified,
the event timer will stop.

Example: 10 e ls
2 0 e v e n t 6 0 > 6 0
3 0 on e v e n t 9 osub $ EU
4 0 e v e n t on
50 1 = 0 : C=0
60 1=1+1
7 0 P r i n t c u r s o r (15? 3) ; 11 I = " ? I ;
80 g o t o 60
90 $ EU
100 C=C+1
110 P r i n t c u r s o r (15? 13) " C = " J C 5
120 r e t u r n

35

EVENT (ON/OFFj
FORMAT : EVENT (ON/OFF) (OR | :}

FUNCTION : Enables/Disables event timer interrupt.

Comments: <ON/OFF>
ON = Allows calling of subroutine by an event timer inter

rupt set up by an ON EVENT GOSUB.. statement

OFF = Disables event timer interrupts

Example: i 0 0 !~0 n s 0 1 0 1 j y , 0 ? 2
l i 0 c ■r
■ii z 0 0 y 0 n t 6 0 ? 6 0
l -y 0 0 n 0 M0 n t 9 0 s u h $ S U B
i 4 0 0 M0 n t 0 n
15 0 H= 0 » T3 J. = 0
■»6 0 t fih D
l —7 0 r 0 P 0 a t
i 0 H = H+ 1
1 9 0 P r i n t c u r s 0 r C 1 0 ? 1 0 > “ 11 H =
Z0 0 f \ $ = i n k 0 y $
z 1 0 u n t i 1 H $ < > :! ii

z z 0 0 n d
z T 0 $ i~u 3
z 4 0 1 = 1 4. 1
jlL 5 0 P r i n t- c u r s 0 r (1 !~j 4 “T \ a il _ ____If a Tkl 7 x ._|t J 7 l_ — 7 j.
z 6 0 r 0 +i.- u r n

36

FCOL
FORMAT: FCOL [< color code >] {CR

FUNCTION : In Text Mode, sets the color of the characters.
In G2 mode or Multi-color mode, sets the color of the
graphics display.

Comments: The default value for the color code is 14, grey. If the back
ground color (BCOL) matches FCOL then characters will be
invisible. See Appendix B for color codes.

Example: 1 0 J FCOL TEST
2 0 t o r 1 = 8 t o 14
3 0 f c o l I
4 0 s l e e p 1
5 0 n e x t. I

37

FOR.
FORMAT:

FUNCTION :

Comments:

Example:

.TOJSTEP]
FOR < control variable > = < initial value> TO < final
value> [STEP < step value >] {CR |:j

FOR NEXT loops are used to perform many iterations of a
section of the program. The control variable is set to the
initial value and control transfers to the next statement.
When a NEXT statement is reached with the same control
variable then the control variable is incremented by the
step value. When the control variable reaches or exceeds
the final value then control is transferred to the statement
immediately after the NEXT statement. Otherwise the
statements between the FOR and the NEXT are executed
once more.

The number of times that the program will iterate the com
mands in the loop is calculated as:

iterations = (final value-initial value)/step value

If the step value is not specified then it is given the default
value of 1. The control variable should not be altered by
the instructions in the loop. This is very dangerous and is
poor programming style. When several loops occur one
within the other they can take a long time to execute. Care
should be taken to realize this when writing programs. Pro
grams may contain complete loops within other loops but
they may not overlap. Thus for each FOR statement en
countered a NEXT must occur in the reverse sequence.

1 0 0 c 1 S

1 1 0 t o r T —I ~ t. m 2 7 ■- t 0 P
120 o r J = 1 t. o 9
1 3 0 I o c a t- e I ? J
1 4 0 P r i n t r i g h t $
1 5 0 n 0 X t J
1 6 0 n e x t i
1 7 0 P r i n t
1 8 0 0 n d

Note the use of indentation for readability.

38

GCOPY
FORMAT : GCOPY [< format type>] {CR | :}

FUNCTION : Prints the current screen image on the printer.

Comments : The default format type is 0. Formats are defined as follows?

0 = 40 character image format
1 = 80 character image format
Before this command is executed, it is necessary to issue
the GMODE command.

Example: 1 M H ? 9 c o p y T E S I
1 I 0 P r i n t " i i

1 2 0 9 in i t
1 3 0 9 m o d s 4
1 ^ 0 E R A S E
1 5 0 t C O 1 & 0 0 0 h
1 6 0 GV 1 = 3 0 ; G V2 = 5 : H = 0
1 7 0 P I o t 2 2 8 ? 0
1 8 0 t o r T H = 0 t o 6 + 1 8 0 s t 0 y
1 9 0 H = H+ 1
2 8 0 X = c o s < 8 0 - H / 2 , T H >
2 1 0 G V = G V 1 + 1
2 2 0 G X= 1 2 8 + X
2 3 8 G V 2 = G V 2 +1
2 4 0 d r a w G X ? G V 1
25 0 9 ffi 0 M 0 1 2 8 , G V 1
2 6 0 d r a w 6 X 7 G V 1
27 0 n e x t- T H
2 8 0 P r i n t # 2
2 9 0
3 0 8 9 m o d 0 0
3 2 0 t o r G = 0 t o 1
3 3 0 P r i n t i 1 ? c u r s o r < 1 ? 2 1 > " i! G C P V H * G "
34 0 9 c o p y G
3 5 8 P r i n t # 2 Si i i

3 6 0 n 0 x t G
37 0 P r i n t " i i 3

n

3 8 0 0 n d

39

Comments:

Example:

GET
FORMAT:

FUNCTION :

GET [# < C H >] [[,] < variable> [,..]] |CR |:}

Reads data from a designated channel to a designated
variable.

It is desirable that data obtained with GET be data created
with PUT. With character variables it is necessary to use
LEN before GET to control the size of the variable.

g e t # 3 C 0 D E ”■ , N f i M E f » T E L $

40

GINIT
FORMAT:

FUNCTION :

Comments:

Example:

GINIT [CR | :}

Enter the graphics mode (applicable to the multicolor and .
Gil modes). The specified screen-clear-specifier is used for
graphics (default is 255).

<screen-clear-request>
0 = display character, font clear colors, graphics

cursor and initialize graphics mode
1 = display characters
2 = font clear

In the multi-color mode, values greater than 1 clear the
font and display characters.

If the screen is not cleared, go ahead and arrange
characters on the displayed screen.

0
1 1

P
c

r
0

i
n

n
jz-

t
Q 1

H
j u s
. ? w ? ft

•3 i n
, 1

i t

8 d r a w 1 0 ; 1 0 ; 2 00 , 1 8 0
•j 8 a i n i t
4 8 t c o 1 8
5 0 d r a w 8 T 19 1 , 5 5 , 0
b 8 0 n d

41

FUNCTION : Sets up the graphics display mode.

GMODE
FORMAT : GMODE [<mode 1>] [, cmode 2>] [CR |:)

Comments : Affects the PLOT, DRAW, and PAINT statements. It takes
the color or pixel already on the screen and the newly
specified color or pixel, and then applies one of the func
tions below to decide the resulting color or pixel, e.g. a
boolean operation on the specified color code of a pixel
ORed with the existing color code of that pixel yields the
new pixel condition in GMODE 1.

< mode 1 > •
Color

0
1
2
3

Pixel
4
5
6
7

= replace
= OR
= AND
= old display

= replace
= AND
= XOR
= old display

The following relationship holds for the “ GRP” device.

< mode 1 >
Color

0
1
2
3

Image
4
5
6
7

replace
OR
AND
old display

OR
AND
XOR
Old display

When you specify “ 1” in mode 2, only the image will be
processed.

42

Example 1 0 0 o n s O 1 0 ? 7 0 ;t 0 i
1 10 g i n i t
1i 2 0 t c 0 1 3
1 3 0 d r a w 1 0 0 1 0 3 i 0 0 , 1 0 0 ; 0 , 1 0 0
<4i 4 0 p a i n t 5 0 ? 5 0
i 5 0 t c 0 1 T

1 6 0 d r a i.,.i 55 70 31 5 5 j 5 0 ; 0 , 5 0 * 0 j 0
1J. 7 0 g m o d e 1
18 0 i c 0 1 !j
4 9 0 r a i n t 2 5 7 o n

"T

v 0 0 p r i n t c h i*- ■$ r' 6 >
•“«1 0 0 n d

43

GMOVE
FORMAT : GMOVE <GR-coordinates> {CR |:}

FUNCTION : Moves the graphics cursor to the desired coordinates.

Comments: No line is drawn with this command; it is only used to
position the graphics cursor.

Example: X 0 ■_ i_i (_! | i 0 i yl i X
1 1 0 9 i n i t
12 0 t c o 1 B
1 3 0 d r a w 1 0 0 , 0 ; 1 0 0 , l 0 0 ; 0 , 1 0 0 ; 0 :
1 4 0 f c o 1 15
1 5-0 9 rn o ■...' s 2 0 0 , 1 0 0
1 6 9 d r a w 1 0 0 | 0 ' 1 0 0 1 0 0 j 0 j 1 0 0 " 0 :
1 7 0 P r i n t c h r $< 2 6)
1 8 0 e n d

44

GOSUB
FORMAT: GOSUB < destina tion [CR |:j

FUNCTION : Transfers control to a subroutine so that control will be
returned BACK to the point IMMEDIATELY AFTER the
GOSUB.

Comments : Use the RETURN statement to transfer control back to
the point where the subroutine was called. Notice that this
allows the subroutine to be used from many places in the
program. GOSUB should be used in place of GOTO when
ever possible. The BASIC GOSUB has recursive cabability:
that is, a subroutine may GOSUB to itself, but as BASIC has
no parameter passing abilities, all variables must be manag
ed by the programmer. Destination = (line number | label
name|numeric variable (line number)|string variable (label
name)}

Example: 1 0 P r i n t it IM=H1"
j L 0 9 o s u b $ T c HR
-j 0 9 o 3 u b $ D P ■ SE T
4 0 0 n d
1 0 0 $ b T c HR
1 1 0 -5t c h r fi 0 0 13 3 c 6 6
1 “ I 0 r 0 t u r n
•?0 0 $ s p . b ET
•~i
j L 1 0 s c o d 0 ? &7 F: CO 1
M - 0 1 o c 0 t o 12 3 ? 9 6
9 0 r 0 t u r n

b ? e 2 4 0 0 " t o & 7 F ? 0

0 , 5

45

GOTO
FORMAT : GOTO < destination > {CR |:J

FUNCTION : GOTO transfers program control from the current line to
the line number or label in the statement.

Comments : GOTO statements should be used as little as possible. Al
though this is difficult in BASIC their use can be limited. To
make programs clear, write programs in blocks, with little
use of GOTO within blocks. A statement appearing after a
GOTO on the same line (with a : separator) will never be
executed. Destination = {line number | label name |
numeric variable (line number) | string variable (label
name)}

Example: 10 0 fi =1 0 0
1 1 0 9 O t O 1 0 0 0
1 2 0 8 = PI+ 5
1 3 0 9 o t o $ D I S P

1 0 0 0 B = Pi 5
1 0 1 0 ■$ D I S P
1 0 2 0 P r i n t " a = " ; P I ; " b =
1 0 3 0 e n d

46

IF..THEN..ELSE
FORMAT : IF < conditional expression> THEN < statement>

[ELSE < statement > [:..]] [CR |:}

FUNCTION : Evaluates the conditional expression. If it is true (the condi
tion is satisfied) then the statements(s) after the THEN are
executed. If it is false (the condition is not satisfied) then
the statements after the ELSE are executed.

Comments:

Example:

If there is no ELSE part and the condition is not satisfied
then the statement has no effect. Conditional expressions
are : = , < > ,

ifAa' <

1 9 0 i n P u t " 1 0 + i 5 = ? " ; fl
1 1 0 i i ft = 2 5 t- h e n P r i n t " 9 o o d "

120
e 1 s
e n d

0 Pr i n t ii a 9 a i n " : g o t o 1 0 9

47

INPUT
FORMAT : INPUT [<prom pt> | # <channel number>] (, | ;)

< variable > [,..]{CR|:j

FUNCTION : INPUT accepts alphanumeric data from the keyboard and
assigns their values to variables.

Comments : The INPUT statement will place a question mark on the
screen if the program does not include the < prompt >
field. If multiple inputs are to be entered at one time then
the variable names should be separated with commas.
When multiple entries are to be made by the user running
the program, then the inputs must be separated by com
mas. This format results in a problem inherent in BASIC:
when the user is requested to input a string of alphabetic
characters into a string variable, the string should not con
tain any commas. The only way to overcome this short
coming is to write input routines using the INKEY function.
For programs to be used by inexperienced users this may'
be preferable to INPUT, as ‘bomb-proof input routines can
be created. A ‘bomb-proof input routine cannot cause a
BASIC error, no matter what the user types in. With the
INPUT statement, if the user enters the wrong number of
parameters, or enters a comma in a string, BASIC will print
an error message. These may not be understood by inex
perienced users.

Example:■ 1 0 0 i n P u t " lil h a t i s y 0 u r a '3 0 ? " ; A G
1 1 0 i n P u t- " I...I h a t- i s y 0 u r n a rn 0 ? " ; N
120 P r i n t. f lQ E ; " i s a '3 0 0 d a ‘3 0 " ; N
1 3 0 0 n d

r u n
Wh a t i s y o u r a 9 0 ? 4
W h a t i s y o u r n am e ? R o n a 1 d
4 i s 9 o o d a 9 0 R on a 1 d

R e a d y

48

l
l! a:

KILL
FORMAT: KILL <file name> {CR |:}

FUNCTION : Deletes specified files.

Comments: Effective only with an external disk drive.

Example: k i l l " FXfl 0 : 0 L D DAT R"

49

LEN
FORMAT: LEN < character string length > {CR |:j

FUNCTION : Resets the maximum length of string variables.

Comments: The default value for string lengths is 18 characters. LEN
can be used to set the value from 1 to 255.

Example: 1 0 0 fi $ = " a b c d e t 9 h i J k 1 m n o P 9 r s t u "
1 1 0 P r i n t - fl T
r u n
E r r 15 i n 10 0

R e a d y

10 0 1 an 2 4 : fl $ = " ab c d e t 9 h i J k 1 mo P 9 r s t- u "
1 1 0 P r i n t fl $
r u n
a b c d e t 9 h i J k 1 rn n o P 9 r s t- u

R e a d y

50

LET
FORMAT: [LET] < variable > [,< variable >] [,.......]= < expression >

(CR |:}

FUNCTION : LET assigns the result of an expression to a variable. This
result may then be referenced in other expressions.

Comments: The word LET is optional. A variable name may be followed
by the assignment operator ‘ = ’ and an expression. LET
itself is a vestigial command.

Example: 1 0 0 l e t fi = 5
1 1 0 B = 6
1 2 0 P r i n t A >B

51

LIST
FORMAT: LIST [< descriptor> | < file nam e>] [< line number-1 >]

[, < line number2>] {CR |:}

FUNCTION : Lists a file or portion of a file to another file, the printer, or
on the screen.

Comments: The LIST command can be used instead of the SAVE com
mand to store files. When a file that was LISTed to disk or
tape is subsequently read, the program in memory will not
be erased, unlike a file that was SAVEd. However if the
program being read has any line numbers identical to the
memory program these lines will be replaced with the new
lines. To distinguish these files from normal files, they are
called “ listing files.”

Example: 1 i s t
10 0 fl = 1 : B = 2
1 1 0 P r i n t fl
1 2 S P r i n t 8

R e a d y

52

LOC
FORMAT:

FUNCTION :

Comments:

Example:

LOC < sprite-number> TO <GR-coordinates> {OR |:}

Moves sprite-number to the specified GR-coordinates.

Sprite-numbers are 0 to 31, 0 has highest priority. The
highest priority number at that location will be displayed.

1 0 ' L O C T E S T
2 0 P r i n t " L IM B "

3 0 s t c h r " 0 0 1 3 3 c 6 6 d b 7 e 2 4 8 0 "
4 0 s c o d 0 , & 7 F : s c o l 0 ? 4
5 0 ■ f o r 1 = 0 t o 2 5 5
6 0 1 o C 0 t. o 1 , 9 0
7 0 n e x t I

53

LOCATE
FORMAT: LOCATE <colum n>, < line> {CR |:}

FUNCTION : Moves the cursor to the specified line and column on the
screen.

Comments : This statement is identical to CURSOR (X,Y) except that
because CURSOR is a function, it can be used in a PRINT
statement and LOCATE cannot. The screen uses a 0 origin
coordinate system. The legal range of each coordinate
depends on the screen mode in use.

Example : 1 0 8 1 o c a t e 9 . 1 1
1 1 0 Print, " B o 11 o m c o r n e r

54

MAG
FORMAT : MAG [< sprite-modifier >] {CR |:}

FUNCTION : Change the sprite size and format.

Comments : < sprite-modifier >
0 = 8 x 8 dot matrix
1 = 8 x 8 dot matrix (by 2)
2 = 16x 16 dot matrix
3 = 16x 16 dot matrix (by 2)

Example: i 1 0 P r i n t
i 2 0 s t- c h r " 0 0 1 8 3 c 6 6 d b 7 e 2 4 0 0 " t o & 7 F j 0
1 3 9 S C 0 ij 0 J & 7 F
1 4 0 SCO] 0 , 4
1 5 0 m a 9 1
1 6 1 O C 0 t 0 1 0 0 , 1 0 0
1 7 0 e n d

Example of display
for ‘A’, or & 41

Character
dot matrix

Enlarged
dot matrix

Notes

MAGO N
8 x 8
dots 8 x 8 dots

• Default mode
when power is
first supplied

• Sharp picture

MAG 1

16x16
dots

16x16
dots

16x 16 dots

16x 16 dots

One large picture
can be created
by combining
four smaller
pictures

• Hazy picture

MAG 2 a
H
B
C

8 x 8
dots

16x16
dots

1 Large sprite can
be easily created
by combining
four characters

1 Sharp picture

MAG 3
41 13
PI (n*

16x16
dots

32 x 32 dots One large picture
can be created
by combining
four smaller
pictures
Hazy picture

55

NEW
FORMAT: NEW (CR

FUNCTION : Clears the current program and memory contents.

Comments: This command prepares the M5 for beginning a new
program. MAKE SURE that the current program has been
saved on disk or tape before issuing a NEW command.

Example: 1 0 r e m P r o 9 r a m 1
2 0 d i m R < 1 0 0}
3 0 9 o s u b $ I N I T

R e a d y
n e w

R a a d y
1 i s t

R e a d y

56

NEXT
FORMAT : NEXT [< control variable >] (OR

FUNCTION : NEXT ends a section of a program started by a FOR
statement which is to be executed repeatedly. The control
variable indicates which FOR statement this NEXT matches.

Comments: NEXT should always be used with explicit control variables
as leaving them out makes the program very confusing. All
FOR NEXT loops should be indented two or three spaces
to show the extent of each loop graphically. Further, each
loop should be a maximum of one screen or one page in
length. Longer loops should call subroutines.

Example: 10 0 t o r 1 = 0 t o 21 s t e p 3
i i y v i n t* i
t 2 0 n e x t I

57

OLD
FORMAT: OLD [<file-nam e>] (CR |:j

FUNCTION : Reads a file from external storage.

Comments: When the file-name is omitted, the first file found is read
into memory.

Example: o ld " CMT i P ROG 1 "

58

ON ERROR GOSUB..
FORMAT : ON ERROR GOSUB < destination {OR |:}

FUNCTION : Transfers control to the line number when any BASIC-F
error is detected during program execution.

Comments : This command allows the program to continue to run
when an error occurs. The routine should display an error
message which will explain the error that the user made.
The program should then allow the user to correct the
mistake. This will only work with run time errors, not
program syntax errors. Destination = {line number | label
name | numeric variable (line number) | string variable
(label name)}

Example: 10 o n e r r o r •3o u b $ER R
-X0 i n P u t " I NPUT N U M B ER" * fi
■T.J0 P r i n t fi

4 0 $ ER R
5 0 i t 0 r r = 2 5 t h e n r es ume 20

59

ON EVENT GOSUB
FORMAT : ‘ON EVENT GOSUB < destina tion (CR | :}

FUNCTION : Calls subroutine beginning at line number when event timer
interrupts— interrupt priority 2. (The event timer is initializ
ed with the EVENT statement.)

Comments : Destination = {line number | label name | numeric variable
(line number)| string variable (label name)}

Example " i y 0 $ u 0 n t* S 0 ? y
1 1 0 o n . 0 y e n t 9 0 s u b E U
1 2 0 0 m 0 n t o n
1 3 0 9 o t o 1 3 0

1 4 0 ’
15 0 $E U
1 6 0 P r i n t- c h r $ < 7) ;
17 0 r 0 1 u r n

60

Comments:

ON..
FORMAT:

FUNCTION :

Example:

GOSUB-
ON <expression> GOSUB < destina tion {CR |:j

This is a multiway branch instruction. After evaluating ‘ex
pression, branches to the nth line number in the line
number list. On executing a RETURN, returns to the next
statement after this ‘ON GOSUB.’

This type of instruction is also known as a CASE or SELECT
statement. It allows one of many options to take place from
one point in the program. Be sure that the range of results
for the expression is limited to the number of line numbers
in the line number list. It is suggested that labels be used
for all line numbers. Destination = {line number | label
name | numeric variable (line number) | string variable
(label name))

n t e r t h e c o rn m a n d n u rn fa e r
i

u fa $ C 0 H I , f C 0 M2 ? $ C 0 M 3

i 0 0 0 $ C 0 M 1

2 0 0 0 $ C 0 M 2

3 0 0 0 $ C 0 M 3

i kJM W i n P u t " E
< 1 - 5 > M ; c
■j n ij *3 o s

61

Comments:

Example:

ON.
FORMAT:

FUNCTION :

GOTO.
ON <expression> GOTO d e s tin a tio n > [CR |:}

This is a multiway branch instruction. After evaluating the
expression, branch to the nth line number in the line
number list.

For using subroutines the ON GOSUB statement will be
more convenient. Destination = [line number | label name
| numeric variable (line number) | string variable (label
name)}

1 9 0 i n P u t " No , < 1 3> '? " ; CPISE*
1 1 0 i t 0 f t S E<1 o r CR S E > 3 t h e n o t o 18
12 0 on CASE 9o t o $ WHEN 1? $ WHENS ? $ W H £ N

1 0 0 8 $ I..J HEN

2 8 8 8 $!.ij HENS

3 0 8 8 $ W H h N 3

62

Comments:

Example:

ON..
FORMAT:

FUNCTION :

RESTORE.
ON <expression> RESTORE <destination> {OR |:}

Sets the data pointer to one of several data groups depen
ding on expression. After evaluating the expression sets
the data pointer to the data statements after the nth line
number in the line number list.

Use labels instead of line numbers for each of the data
groups. See the DATA and RESTORE statements. The
expression must result in a number less than or equal to
the number of labels in the line number list. Destination =
(line number | label name | numeric variable (line number)
| string variable (label name)}

10 0 i n P IJ t ii W h a t c h a r a c t e r 9 r o u P
1 1 0 i i T ijl o r T > 2 t h e n '3 o 1 o 1 8 0
4 2 0 g n l r 0 s t o r 0 $ S ? $ L
i 3 0 t o r T_ 4~ i t o 5
ii 4 0 r 0 a d
4
i 5 0 P r i n t hi $ 5
1 6 0 n e x t t
4 7 0 e n d
1 8 0 $ x"

1 9 0 d a t a a ? b ? C ? d ? 0
0 0 $ L

V i 0 d a t a hi ? 8 , C ? D , E

63

OPEN
FORMAT : OPEN < file name> [for [input | output | append)] as#

< C H > [Record < record length >]{C R |:)

FUNCTION : Opens user files, for further usage.

Comments : File names must have no more than 9 characters.

Input is used in conjunction with the INPUT # command, and is
reading data from a file. Output is used in conjuction with the PRIN
command, and is for writing data to a file.

Append is used like output, but only when you are adding data tc
already existing file.

1 0 0 o P 0 n " P R T
i l 0 P r i n t #2 "
120 C 1 O S 0 #2
130 e n d

Example:

PAINT
FORMAT : PAINT <GR-coordinates> [, < boundary-color> [,..]]

ICR | :}

FUNCTION : Paints an area delimited by the GR-coordinates using one
of up to 16 colors indicated by boundary-color.

Comments:

Example:

Even if the boundary-color is omitted, the appropriate area
will not be colored transparent (invisible).

■»0 0 o n s o : e ? , 0 ? 0 7 1
1 i 0 r 1 5
i 2 0 g i n i t
1 f o r 1 = 1 t O 1 0
i 4 0 X = r n d < 2 3 0 ': >
l5 0 V X - r n d < 18 0 *: >
1 6 0 i.ij X X = r n d (5 0 1 0 ’/.
1 7 0 i.ij v — r Fs d < 5 0 ■; > + 1 8
i 3 0 C 0 L "*« = r n d < i 3 */. > + 2 y.
i 9 0 t C 0 1 C 0 L
Z0 0 g m o y e V ■ 1 t•*B ? 1
Z1 0 o r a w

i ,,1 a , .f**"i ‘i + i.j x y. ̂ v %' x + u x y. 7 v % + y v *•:;
i i ■/ •l ? i + i.ij M a V V U V T ? r’« ? i •'*

Z2 0 t C 0 1 r n d < 13 y. + 2 y.
z 3 0 P a i n t v y. + y x y. / 2 y . , v ■; + y v y. / 2 , c o L y.
z 4 0 n e x t i
z 5 0 c o n s o l e ? 7 7 i

65

PLOT
FORMAT : PLOT <GR-coordinates > [;„] [CR |:}

FUNCTION : Displays the dot associated with the coordinates. Use the
color set up by a FCOL statement.

Comments : After execution, the graphics cursor will reside at these
coordinates.

Example • i y y c n n s o l e . ’ ? y ? y ? 1
1 1 0 C 1 S
1 2 0 9 i n i t
1 3 8 io r ' I = 1 t o 3 0 0
1 5 0 f c o 1 r n d < 1 3 X) + 2 X
1 6 0 P 1 o t r n d < 2 5 5 X> » r n d < 1 9 1 X>
1 3 0 n e x t I
1 9 0 c o n s o 1e j ? ? 1

66

POKE
FORMAT : POKE < memory address> [< d a ta > [,...]] [CR

FUNCTION : POKE writes data directly into specified locations in the
computer memory.

Comments: The data may also be an expression to be evaluated before
the rest of the statement. Care should be taken with me
mory addresses and data contents. Certain locations will
destroy the current program in memory. Programs written
for other computers will not work on the M5 if they have
POKE (or PEEK) statements without special modifications
to these statements.

Example: 1 0 0 P o k e & F 8 0 0 ?S F E

67

POKEW
FORMAT : POKEW < memory-address> [, <da ta> {CR

FUNCTION : Writes the data to the specified memory address in CPU
memory.

Comments: The data must be numeric. The lower-order byte is written
in the specified address while the upper-order byte is
written in address +1.

Example: 1 0 0 C ’ S

1 1 0 B = & F F F F
12 0 P X = y a r P t r < 8 X)
1 3 0 p o k e w h , & 1 0 0 0
1 4 y pi*- in t- h e x T **. y j
1 5 0 e n d

68

PRINT
FORMAT : PRINT [# <channel number>] < expression>,... {CR

FUNCTION : Puts text in the screen display buffers.

Comments: PRINT is also used to send control characters which may
not appear as characters but which have important effects
on the screen buffers. Most characters sent by PRINT to
the screen buffers are merely deposited and appear on the
screen. Control .characters, on the other hand, may clear
the contents of a buffer, change which buffer will be
displayed on the screen, erase a character from the buffer,
or cause future PRINT commands to send characters to
one or the other buffer. It is important to realize that the
PRINT command can put characters into the buffer that is
not currently visible.

Example: 1 8 8 P r i n t " G o o d d a y , e h ? "

r u n
•j o o d d a y a h Y

R e a d y

69

PUT
FORMAT: PUT [# < C H >] [[,] < expression> [,..]] {CR | :}

FUNCTION : Assigns a binary form to the value of an expression and
outputs it.

Comments: Binary form is integral in BASIC; the chief purpose of this
command is to create records of fixed length. It ensures
that when output, characters will be of constant length.

Example: p u t # 3 C 0 DE 7NfiM E $. > T E L $

70

RANDOMIZE
FORMAT : RANDOMIZE [CR | :}

FUNCTION : Resets the seed for the random number generator.

Comments : This affects RND

Example: 10 r a n d 0 mi z e
20 i o r I = 0 t
3 0 R = r n d < 1 >
40 P r i n t R
5 0 n 0 X t I
60 0 n d

71

READ
FORMAT : READ < variable list> {CR |:j

FUNCTION : READ loads data from DATA statements into variables.

Comments : When a READ statement is issued, the variable gets the
value of the data item at the current value of the data
pointer. The data pointer is maintained by BASIC-F. When
you type RUN the data pointer is set to the first data item
in the first DATA statement wherever it appears in your
program. After the first READ you must exercise care in
using READs, to ensure that you are aware of the position
of the data pointer. When modifying the program always
ensure that the order of the DATA statements is preserved.
Use the RESTORE command with labels, to ensure correct
positioning of the data pointer.

Example: 1 0 0 r 0 a d X ? V $
i i 0 P r i n t
1 2 0 0 n d
1 3 0 d a t a 2 0 0 ,

r u n
2 0 0 j Qh n

R e a d y

RECORD
FORMAT : RECORD # < C H >] [,] < Record number > {OR

FUNCTION : Specifies the record to be accessed next, and the execu
tion order of reading and writing.

Comments: A record is a collection of files of uniform length. The
record number may range from 0 to 65535, and the length is
specified by OPEN. Random access is available. Normal execution
order is write then read.

Example: r e c o r d # 3 j C D

73

REM
FORMAT: {rem | ! | ’} < comments >

FUNCTION : Stores programmer comments within the program

Comments: REM is short for ‘remark’. Remarks are not executed by
the computer. It is recommended that remarks be placed
liberally throughout all programs to help when debugging
programs. Unfortunately REM statements can use up a lot
of memory. A trade-off must be made between readability
and ease of modification and debugging. No statements
may occur after a REM in BASIC-F. This is unlike most
other BASICS.

Example: 1 0 0 r e m T h i s P r o.9 r a m w a s w r i t t e n
M a r k U o u m a r d

1 1 0 ’
12 0 ’ t h e - f o i l o w i n 9 s e c t i on i n i t i a

t h e m a i n v a r i a b 1 e s
1 3 0 ’ a n d o p e n s f i l e s

74

RENUM
FORMAT : RENUM [<new line n u m b e r>][, <old line number>][,

< s te p >]

FUNCTION : Changes the line numbering of the program. Maintains all
GOTO and GOSUB commands.

Comments : As a program grows in size, more lines of code may
need to be added than was anticipated. If room runs out,
RENUM can be used to create more space and even out
the line numbering.

fi , B , C = 1
f o r 1=1 t o 10

fl = f i+ I
B = B - I
C = C * I

n e x t I
P r i n t fi ? B , C
e n d

txampie: 1 0 0
1 1 3
1 2 6
139
152
16 5
1 7 8
19 1

R e a d y
r e n u m 10 0 0, 1 0 0,20

list
1 0 0 0 fi , B , C = I
1 0 2 0 f or 1 = 1 t o 10 0
1 0 4 0 fi = fi + I
1 0 6 0 B = B - I
1 0 8 0 C = C * I
1110 n e x t. I
1120 Print fi,B ,C
1140 e n d

Re a d y

r

REPEAT
FORMAT : REPEAT [CR | :}

FUNCTION : Sets up a loop with a logical test at the end. The end of
the loop is specified with an UNTIL.

Comments : The loop is used much like a FOR NEXT loop where no
counter is required. A REPEAT loop is always executed at
least once! The test to end the loop is in the UNTIL state
ment at the END of the loop. When a REPEAT instruction
is encountered, BASIC-F marks the line and continues
execution of the next and succeeding statements. When
an UNTIL statement is encountered, the logical test is
evaluated (see UNTIL). If it is true the last REPEAT mark
is removed and execution continues on the line following
the UNTIL. If it is false, execution continues on the line
following the last marked REPEAT statement.

Example: 1 0 0

oIIct

1 1 0 r eP e .31
1 2 0 fi = ft + 1
1 3 0 P r i n t
1 4 0 u n t- i 1 fl =
1 5 0 e n d

M

76

RESTORE
FORMAT: RESTORE [< destination >] (CR

FUNCTION : Resets the data pointer for a group of data items in DATA
statements.

Comments: This function is convenient when you need to extract several
categories of information from the same group of data.
Destination = {line number | label name | numeric variable
(line number) | String variable (label name)}

Example: 1 8 8 r 8 st o r e $D R T fi 2
1 1 8 t o r 1 = 1 t o 5
1 ŷ r e a d N 5 ? H
13 8 P r i n t $ R , fl
1 4 8 n e x t. I
15 8 0 n d
1 6 0 * D A T A 1
17 0 d a t a A = > 1 0 0 , B = ? 13 8 ? C = ? 3 0 0
1 8 0 $ D fl T fi 2
1 9 8 d a t a Ll =? 2 0 5 ? E = ? 4 o 4 ? ~ = ? 5 5 4 ? ld=? 1

H = , 4 4 4

77

RESUME
FORMAT : RESUME [< destination >] CR

FUNCTION : Bypasses an error and begins execution from line number.

Comments: When line-number is omitted, the next statement is executed.
Destination = {line number | label name | numeric-
variable (line number) | string variable (label name))

Example: i y y o n e r r o r 9 o s u b $ E H R
110 fl £ = " " : B = 6 5
1 2 0 H$ = f i•$ + ch r $ <: B >
130 P r i n t f l $
1 4 0 9 o t- o 1 2 0
1 5 0 e n d
1 6 0 $E R R
17 0 A $ = " " : Q = B +1
1 8 0 i t B >9 0 t h e n r e s u me 15 0
1 9 y r e s ume 17 y

_

78

RETURN
FORMAT: RETURN [< destination >] {CR

FUNCTION : Returns the program control to the point immediately after
the point from where it was called by a GOSUB.

Comments: A RETURN must not be executed if it has not been pre
ceded by a GOSUB. Thus a subroutine which ends in a
RETURN must always be called by a GOSUB. GOSUB and
RETURN should be used frequently to create a modular
program. Using the optional line number version of
RETURN generally defeats the purpose of GOSUB.
Destination = (line number | label name | numeric variable
(line number) | string variable (label name)}

Example: 1 6 0 9 o s u b f E X 4 M
1 1 0 9 o -■ u b $ D I b P L h V

N

N

1 0 0 0 $ E X H M
n

N

14 9 0 r e t u r n
1 5 0 8 $ D I S P L fiV

1 3 2 0 r e t u r n 1 0 0

79

RUN
FORMAT: RUN [< destination > 1 <file nam e>] [CR |:}

FUNCTION : Executes the current program.

Comments: The optional line number can specify the starting point of
the current execution. All variables are cleared when a
RUN is executed.

Example: r u n

80

SAVE
FORMAT : SAVE < file-name > [, < first-address > , < last-address >

[, <fitart-address>]] [CR |:}

FUNCTION : Writes to external memory.

Comments: When a file name only is specified, or when an address is
specified in a Basic-G program, this command will write
from the CPU’s optional memory area to tape or disk.

Example: s a v e " C M T : p R 0 6 1 "

81

SCOD
FORMAT : SCOD'< sprite-number > , < character-code > {CR |

FUNCTION : Assigns character-code to sprite-number.

Comments: Sprite numbers can be from 0 to 31 only.

Example: 1 y y c o n s o l e ? ? ? ? 2
110 CI S
1 2 8 s t c h r "9 0 1 8 3 c 6 6 d b 7 e 2 4 0 0 " t
13 0 s c o d 0 ? &7 F
1 4 Gi s c o 1 0 ,? 4
1 5 0 m a ‘3 1
16 0 1 0 C 0 t O 1 0 0 ? 100
17 0 en d

82

SCOL
FORMAT : SCOL < sprite-number > , < color > (CR |:}

FUNCTION : Colors sprite-number using color code.

Comments : Only the character color can be changed, not the pixel
background color.

Example: 1 0 ’ SCOL TEST-
20 P r i n t "L IH I"
■30 s t c h r " 00 1 8 3 c 6 6 d b 7 e 2 4 0 0 " t o & 7 F , 0
48 s e e d 0 » & 7 F
5 0 -for 1 = 1 t o 14
6 0 S c o t 0 j I
70 1 o c 0 t o 1 2 3 ? 9 6
30 s l e e p 1
9 0 n e x t- I

83

SG
FORMAT: SG < channel-number> , [{ < frequency> | <noise>}]

[, < volume >] {CR |:}

FUNCTION : Turns the three tone generators and noise generator on
and off as well as making them produce sound effects.

Frequency : <channel-number>
0 = tone generator channel 0
1 = tone generator channel 1
2 = tone generator channel 2
3 = noise generator

< frequency >
Frequency value varies from 1 to 1023; 1 is
the highest frequency and 1023 is the lowest.
(1024 is the default.)

< noise >
When the noise generator is used, channel 3,
0 — 7 specifies the type of noise. 0 - 3 are tone
while 4 - 7 are variations of white noise.
Notice noises 3 and 7 are dependent on the
frequency of channel 2 (even if channel 2 is
not on).

Noise Frequency
0 N/512
1 N/1024
2 N/2048
3 dependent on

channel 2
4 N/512
5 N/1024
6 N/2048
7 dependent on

channel 2

< volume >
Varies from 0 - 1 5 with 15 being the loudest.

84

Example: 1 0 0 t 0 r i = i t !J 1 0

i 1 0 t o r J = 1 8 t 0 45 S t 0 p

1 2 0 S 9 1 , 3 0 J X 1 0

1 3 0 S 9 2 ? J ?0

1 4 0 S 9
7> —j•j ? r 7 J / 3

1 5 0 s 1 0 0 p 8 7 1
1 6 0 n 0 X t J
1 7 0 t o r K = 4 5 t- 0 18 S t 0 P
1 8 8 s 9 1 , 3 0 7K / 1 0
1 9 0 S 9 2 , J , 0
2 0 0 S 9

*7 -n
•J ? I- ? K 71

2 1 0 s 1 e e p 5 7 i "

2 2 0 n 0 X t K
2 3 0 s g 1 , , 0 : s •g 3 7 7 0
2 4 0 •r 1 0 eP 5 , 1
2 5 0 n e x t I
2 6 8 e n d

85

SLEEP
FORMAT : SLEEP < sleep-count > [, < base-time >] {CR 1:j

FUNCTION : Stops execution for the specified sleep time. BASIC event
interrupts will be ignored. However, machine language in
terrupts will be processed.

Comments : Sleep time is (sec):
sleep-count x increment-time/60
If the increment-time is omitted, 60 is assumed.

Example : i @ 0 c 1 s
110 f o r '1 = 1 t. o 1 0 0
12 0 P r i n t . I >
13 0 i f I > 5 0 t h e n s l e e p 30? 1
14 0 n e x t. I
15 0 e n d

86

STCHR
FORMAT : STCHR < pattern-code > TO < character-code >

[, <character-set-number>] {CR |:}

FUNCTION : Assign a pattern-code to character-code (usually a hex
adecimal number associated with an ASCII-code) to deter
mine a character’s shape.

Comments : A character can also be colored using the STCHR state
ment in the Gil mode.

< Character-set-number >
0 = sprites
1 = for character patterns in other than the Gil mode or

character patterns in the top third of a Gil screen
2 = for character patterns in the middle third of a Gil

screen
3 = for character patterns in the bottom third of a Gil

screen
4 = for color codes for characters in the top third of a Gil

screen
5 = for color codes for characters in the middle third of a

Gil screen
6 = for color codes for characters in the bottom third of a

Gil screen
7 = for character patterns in the entire screen
8 = for color codes for characters in the entire screen

Note: 2 to 8 correspond to the Gil mode. The character ‘A ’
is constructed below: its pattern code is to the right (use
hexadecimal notation for its pattern code).

Example: 1 0 0 c o n s o 1 0 ? ?y ? y ?
1 i 0 c 1 s
1 2 0 s t c h r " 0 0 1 8 3 c 6 6 d fa7 e 2 4 0 0 " t o

< " fi “ > , 1
1 3 0 r 9 P e a t
1 4 0] o c a t 0 r n d < 3 1 J£> .- r n d (2 3 V.)
1 5 0 P r i n t ” fi "
1 6 0 fi $ = i n k 0 y $
1 7 0 u n t . i l fi $ < > " "
1 8 0 0 n d

87

STEP
FORMAT : STEP (on | off) (CR

FUNCTION : STEP ON stops execution whenever the statements in the
program change. STEP OFF resumes normal execution.

Comments: The number of the statement to be executed after STEP
ON is indicated as follows:
STOP AT 0000 where 0000 is the statement number.

Example: s t 0 P o n

R e a d y
r u n
s t oP AT 10 9
r e a d V
c o n t.
S t o p AT 1 1 0

88

STOP
FORMAT:

FUNCTION :

Comments:

Example:

STOP {CR | :}

Halts execution of a program from within the program.

A program stopped by STOP can be restarted by CONT.
This is useful for debugging programs.

1 0 0 P r i n t 11 a b c d 0 f g
i i 0 s t 0 P
1 ~ |7-i P •*'" i n t “ h i J k 1 m n

r u n
a b c d e t 9

S t o P a t 1 1 0
R e d d 9

89

SWAP
FORMAT: SWAP <variable>, <variable> {CR |:}

FUNCTION : Transfers the values or contents of designated variables.

Comments : Both variables must be of the same form.

Example: 1 0 ’ B u b b l e s o r t i n ' ?
20 on e r r o r 9 o s u b E R
30 d i m R < 1 0)
40 9 o s u b $ INPUT
50 f o r 1=0 t o 10
60 f o r J = I t o 10
70 i f R < J > < = R < I) t h e n swap f l < J > , R (I >
30 n e x t J
9 0 n e x t I
100 9 o s u b ^OUTPUT
1 1 0 e n d
120 $ I NPUT
130 f o r K = 0 t o 10
140 i n P u t fi < K >
150 n e x t K
160 r e t u r n
170 $ 0 U T P U T
130 f o r 0 P = 0 t o 10
190 P r i n t fl COP)
2 0 0 n e x t OP
2 1 0 e n d
2 2 0 $ER
230 i f e r r = 2 5 t h e n r e s u me
240 P r i n t e r r ? e r r l

90

TAB (X)

TAB
FORMAT:

FUNCTION : Moves the cursor X character spaces right.

Comments : TAB should be followed by a in order to print material in
particular columns on the screen.

E x a m p le : 1 0 0 p r i n t t a 0 < i 0 > ; " T h i :

1 !”1 11

•• u n

T h i s i s c o 1 u n-i n 1 0

R e a d y

91

TAPE
FORMAT:

FUNCTION :

Comments:

Example:

TAPE [CR | :}

Accesses the assembler supplied on tape.

For use with external data tape recorder only.

t y P e
This will read the machine language from tape into the M5
memory.

92

THETA
FORMAT: THETA (0| 1} (CR

FUNCTION : Sets the mode for trigonometric functions to degrees or
radians.

Comments: 0 is radian mode and the default. 1 is degree mode.

Example: 1 0 0 t h e t a 0
1 1 0 p r i n t s i n <30>
1 2 0 t h e t a 1
13 0 P r i n t s i n <3 0)
1 4 0 e n d

r u n
- y „ 9 y 8 0 3 1 1 z 4 u 9 2 9

0 3 5

R e a d y

93

TRACE
FORMAT : TRACE {ON | OFF) {CR | :}

FUNCTION : Displays a trace of executed line numbers while the
program is executing.

Comments: TRACE allows the programmer to see which lines of the
program are to be executed. This is useful only for debugging
programs under development.

Example: 1 0 0 t o r 1 = 1 t o 2
1 1 0 ■ P r i n t- " h i "
1 2 0 P r i n t " d o n e "
1 3 0 n e x t I
1 4 0 P r i n t- " e n d "
1 5 0 e n d
t r a c e o n
r u n
R e a d y

94

TYPE
FORMAT:

FUNCTION :

Comments:

Example:

TYPE (int | dbl | str) (CR | :}

Defines the type of a variable.

In cases where the type designation of a constant or a
variable has been omitted, the TYPE command designates
the type given to the variable or constant. Character-type
designation is effective only with variables.

t y P e s t r

Re a d y
l i s t .
10 A = " AB C "
2 0 B ’ : = 3 9 0 0 #
3 0 C# = 12 . 3 4 5 #

R e a d y
t y P e d b 1

r e a d y
l i s t

10 A $ = " A B C "
2 0 R v = 3 0 0 0

3 8 C = 1 2 . 3 4 5

95

UNTIL
FORMAT : UNTIL < conditional expression> (CR |:j

FUNCTION : Marks the end of a REPEAT loop.

Comments : The REPEAT loop is demarcated by a REPEAT at the
beginning and an UNTIL at the end. All the instructions
between them are executed REPEATedly until the expression in
the UNTIL statement is TRUE. See REPEAT.

Example : 1 0 0 r e p e a t
1 1 0 • X J£ = r n d < 1 0 *•; >
1 2 0 p r i n t- X
1 3 0 u n t i 1 X X = 3 X

This loop will print random integers between 0 and 10 until
it hits an 8.

96

VERIFY
FORMAT: VERIFY [< file-name >] [CR

FUNCTION : Compares a program in memory to another stored on
cassette tape.

Comments: When the file-name is omitted, the first file found on
external memory is compared.

Example: v e r i t y " C M T : p R 0 G 1 "

97

VIEW
FORMAT:

FUNCTION :

Comments:

Example:

VIEW [< x 0 > , < y 0 > , <x1 > , <y1 >] [CR |:J

Creates a view-port on the display screen.

A view-port is a logical screen display. It can be used to
temporarily reduce the amount of the screen used for
display. When a window is in effect the cursor cannot
be moved outside it. The top left corner of the view-port
becomes cursor position 0,0. Thus CURSOR and LOCATE
commands work relative to the new view-port In general
the M5 can be said be have a view-port of 0,0,39,23 when
the power is turned on. X0,Y0 is the top left corner of the
new view-port and X1,Y1 is the bottom left. X is the column
and Y the row. VIEW does not clear the new view port. A
view-port can be used to do relative character positioning
for easily displaying graphs.

1 0 0 i e w 5 .•> 5 , 5 ? 2 0

T h i s e x a m P 1 0 c r e a t e s a w i n d o w o t t o u r
1 i n e s a t t h 0 b o 11- o m o t t h 0 s c r 0 8 " -

98

VPOKE
FORMAT : VPOKE < memory address > , < output data > {CR |:}

FUNCTION : Outputs data to the video memory.

Comments : The data may also take the form of an expression. The
data may not be a list as in POKE.

Example : u p o k e & 2 9 9 8 , | f *
R e a d y
Pr i a t v P e e k (&2 98 8 >
2 5 5
R e a d y

99

VSAVE
FORMAT: VSAVE <file-nam e>, < start-address>, <end-address>

{CR |:}

FUNCTION : Writes Video RAM data to external memory.

Comments: Writes VRAM data between these two addresses to
cassette tape.

Example: u s a u e " c rft t. : P I C 1 "

100

WAIT
FORMAT:

FUNCTION :

Comments:

Example:

WAIT <tim e out count > [, cbase tim e>] {CR |:}

WAIT limits the amount of time that the computer will wait
for input from the keyboard.

The actual wait time in seconds is computed as:

wait = time out count * (base time / 60)

If the time out count is 0 then the timer will not function. If
the base time is 0 then it is set to 256. If the base time is
left out, then it is set to 60. This function is most useful in
writing games in which response time is important.

18 r e m w a i t - for 0 . 5 s e c o n d
2 0 w a i t 3 0 j 1
30 i n P u t " d a t a " ; f l $
40 P r i n t
5 0 g o t o 2 0

101

Chapter 3 Basic Commands

3.1. Functions

In this section all the BASIC-F functions are defined. The
layout is similar to the previous section. The FORMAT entry is
slightly different; all functions may appear anywhere in an ex
pression hence we do not specify the context syntax. Func
tions can not be executed directly without the use of a state
ment such as PRINT. Functions which take parameters are
shown with sample variable names; constants may also be us
ed. If more than one type is possible, variables of both types
are shown.

102

ABS
FORMAT: ABS (X)

FUNCTION : Returns the absolute value of X.

Comments: X must be a number.

Example: P r i n t a fa s C - 3 4 >
34

R e a d y

103

ASCII
FORMAT : ASCII (X$) {CR

FUNCTION : Returns the ASCII code for the first character of string X$.

Comments: As a matter of legibility X$ should be one character long
or replaced with ASCII(LEFT$(A$,1)). ‘ASCII’ stands for
‘American Standard Code for Information Interchange.
The converse function is CHR$(X).

Example: 10 0 A $ = " A B C "
1 1 s3 p r i Ti t a s c i i < A $)
1 2 8 e n d

104

ATN (X)

ATN
FORMAT: ATN (X)

FUNCTION : Returns the arc tangent of X.

Comments: Legal range for X is ±6.8 E 74
Care should be taken to use either radians or degrees
consistently.

Example: 1 0 0 fi = a t n < 1 0)
1 1 0 P r i n t fi
1 2 0 e n d

105

CALC
FORMAT: CALC (< string >)

FUNCTION : Performs a BASIC-F operation on an expression
represented as a string.

Comments: This function allows BASIC-F to compute expressions
unknown at the time the program is written. This is a very
powerful function, but it may introduce problems in debug
ging. This function is useful in mathematical programs in
volving equations unknown to the programmer. See also
EXE.

Example: 10 ' C a l c l a t io n
2 0 i n p u t " c a l c " ; f i $
3 0 f l = c a l c (f i $)
4 0 P r i n t R $; " = " ; fi
4 5 P r i n t
5 0 g o t o 2 0

106

CDBL
FORMAT: CDBL (X)

FUNCTION : Converts an integer into a real number.

Comments: None.

Exam ple: 1 0 0 x x = 1 0 x
1 1 0 P r i n t X 3 X
1 2 0 P r i n t c d b 1 < X X > / 3
1 3 0 e n d

r u n

R e a d y

107

CHR$
FORMAT: CHR$ (X)

FUNCTION : Returns the character whose internal code is X.

Comments: This function is useful for accessing invisible or non-
displayed characters. A complete list of character codes can
be found in the appendices. X must be a valid ASC11 code.

Example: 10 ’ CHR$ TE ST
2 0 f o r 1 = 6 5 t o 9 0
3 0 P r i n t c h r %< I > ’
4 0 n e x t I

108

CINT
FORMAT: CINT (R)

FUNCTION : Converts a real number to an integer.

Comments: Rounding occurs in the conversion.

Example: 10 0 P r i n t c i n t < 1 . 4)
1 1 0 P r i n t c i n t < 1 . 5)
1 2 0 e n d

109

cos
FORMAT: COS(X)

FUNCTION : Returns the cosine of X.

Comments: As with all trigonometric functions, care should be taken
to use either radians or degrees consistently. The range of values
for X is ±2.8 E 16.

Example: 1 0 0 fi — c o s (. P i •••■' 3
1 i 0 P r i n t fi
12 0 en d

110

ERR
FORMAT: ERR

FUNCTION : Returns the error code of the most recent error.

Comments: This function, along with ERRL and ERRLS, is useful for
programs which trap errors and attempt to deal with them
internally.

Example: 18 0 $ Pi B C
1 1 8 ft = B $
1 2 8 P r i n t- ft
1 3 0 r e t u r n

111

ERRL
FORMAT:

FUNCTION :

Comments:

Example:

ERRL

Returns the line number of the most recent error.

See also ERR and ERRL$.

1 0 0 $ fi B C
110 fi = B $
1 2 0 P r i n t fi

run
E r r 13 in 110
Ready-
p r i n t e r r > e r r L e r r l $

13 110 ABC

Ready

112

ERRLS
FORMAT: ERRLS

FUNCTION : Returns the label of the line in which the most recent error
occurred.

Comments: See also ERR and ERRL.

Example: 1 0 0 $ fi 8 C
1 1 0 fi = B $
1 2 0 P r i n t Q
1 3 0 r e t u r n

ru n
E r r 13 in 110
Ready
p r i n t e r r ?e r r l »e r r 1$

13 110 ABC

Ready

113

FORMAT : EXE < character string > {CR |:}

FUNCTION : Executes a BASIC-F statement which has a string
representation.

Comments : This statement allows the program to execute BASIC-F
statements which are unknown when the program is written.
It allows the program to write program segments and
execute them. The string must not contain another EXE com
mand and an error will occur if there is a loop stack. This
statement may also result in programs which are very diffi
cult to debug. Since the program may execute another pro
gram, which does not exist in the original program, bugs may
be difficult to find. This function is very useful for a BASIC-F
program which can control other BASIC-F programs, and
still maintain control of the computer. See also CALC.

Example: i 0 0 0 n 0 r r o r •3 0 s IJ b
1 1 0 i n P ij t ; P $T—1 •->0 0 0 I! g o s ij b i i + P $1-1 T 0 •3 o t o i 1 0
1 4 0 $ Hfi fi
1 CT0 P r i n t I t HH fi fi fi fi fi
4i fi 0 r 0 t u r n
1 (' 0 $ B B B
1 o 0 P r i n t II B RB B B B B
1 9 0 r 0 t u r n
'jt 0 0 $ C c c
2 i 0 p r i n +L* i i Cc Cc c c c
•“ijL2 0 r 0 t ij r n
•” T 0 * E RR

4 0 7 t 0 u-1 r = 0 t h 0 n
5 0 r 0 s IJ m0 1

X i 0

114

EXP
FORMAT: EXP (X)

FUNCTION : Reforms e to the power of X.

Comments: The range of X is from -1 7 5 to +175 exclusive.

Example: i 0 0 fi = e x p <2 >
1 2 9 p r i n t h

i o 0 0 n d

115

FIX
FORMAT:

FUNCTION :

Comments:

Example:

FIX (X)

Returns the truncated integer portion of X.

FIX (X) = SGN (X)* I NT (AGS(X))

1 0 yj. y = a
1 ■ii 0 ! i _ ‘I —i 1
■f 0 P r i n
i T 0 e n d
r un

1

Ready

116

FRE (X)

FRE
FORMAT: FRE (X)

FUNCTION : Returns information about memory usage.

Comments: FRE returns five values according to the following table:

0 - maximum size of work area
1 - remaining user area
2 - remaining free work area
3 - remaining free user area and work area
4 - last address used by BASIC

Example: P r 1 n t- t f" h c 3
6849

This represents the total free RAM available to the user.

117

HEX$
FORMAT: HEX$ (X)

FUNCTION: Returns the hexadecimal equivalent of X in four hex
adecimal places.

Comments: No Zero suppression.

Example: P r i n t h e x $ < 6 5 5 3 5 >
F F F F

Ready

118

INKEYS
FORMAT: INKEYS

FUNCTION : Reads in a character from the keyboard input buffer,
without waiting for a keystrike.

Comments: This function takes a character without waiting, like INPUT
does. If the user has typed a character, it will be read in;
otherwise the character will be a null (00). This function
is useful in games as well as for writing ‘bomb’ proof input
function. With INKEYS it is impossible to create an error
as with INPUT, so routines can be written which will ac
cept input of any form without generating BASIC-F errors.

Example: 10 0 »$=ink e y $
1 1 0 i t fl $ <> ch r $ < 1 3 > t h e n 9 o t o 1 8 8
1 2 8 p r i n t " E x i t "
1 3 8 e n d

\

119

INP
FORMAT:

FUNCTION :

Comments:

Example:

INP(X)

Accepts one byte of input from port X.

X must be in the range 0-255. A port will always provide a
byte without waiting for input. For example, a program to
read a serial port connected to a modem will always have
a byte ready even if the modem has not received a byte.
To use a serial port correctly two actual ports must be
read. The first port will have a bit to indicate when a byte
has come to the other port from the sending device,
modem or otherwise.

100r ern M0DEM = 5 I 0 P 0 r t
i10 r 0 P0at
l•- 0 «**« = in P < S TfiTIJ S >
i*7 0 un+ i1 y =
i4 0 X = inP M 0 D E M)
lcr 0 c * = chr ■$ <X)
i60 r 0 tyrn

This loop will wait until it receives a byte from the port. For
this loop to work STATUS must be assigned the number of
the status port on your serial port and MODEM must be
assigned the number of the serial port itself.

120

INSTR
FORMAT : INSTR ([X,] STRS, SUBS)

FUNCTION : Searches string STRS for the first occurrence of string
SUBS.

Comments : The search for SUBS starts after the Xth character in STRS.
If the substring is not found, then the result returned is zero.
This function is very useful for some applications but con
sumes a great deal of time, especially if the strings involved
are long.

Example: 1 0 0 n $ =" fi b c D E F G "
1 1 0 8 i = " D "
1 2 0 C = i n s t r < 1 , R $,B $
1 7t 0 P r i n t C
1 4 0 C = i n s t r < 5 , R $, B *
150 P r i n t- C
1 6 0 B $ = " H "
170 C = l n s t r (1 ? R $? B $
1 8 0 P r i n t C
1 9 0 e n d

r u n
4
0
0

R e a d y
0

121

INT
FORMAT:

FUNCTION :

Comments:

Example:

INT (X)

Truncates the real and returns only the integer portion of X.

Use the FIX function to round a real number.

1 0 0 0 = 1 0 :E3= 1 . 5
1 1 0 P r i n t Pi * e
1 2 0 Print Pi * i n
1 3 0 e n d
r u n

1 5
1 0

Rea d y

122

LEFTS
FORMAT: LEFTS (X$, Y)

FUNCTION : Returns the left substring of X$ whose length is Y

Com m ents: Care must be taken to ensure that Y does not exceed the
length of X$.

Exam ple: 10 0 fi $ = " 12 3 4 5 RB CDE u w x y z "
1 1 0 B $ = 1 e f t. $ (fi $, 5 >
1 2 0 P r i n t B $
1 3 0 e n d
r u n
1 2 3 4 5

R e a d y

123

LEN
FORMAT:

FUNCTION :

Comments:

Example:

LEN (X$)

Returns the length of character string X$.

The maximum length of a character string is 18.

10 0 R $ = " H El C D E F 13 "
1 1 0 B = 1 e n (.R $ >
1 2 0 P r i n t B
r u n

R e a d y

124

LN
FORMAT:

FUNCTION :

Comments:

Example:

LN (X)

Returns the natural log of X.

The natural log is a logarithm with base e.

100 ■for 1 = 1 to 10
110 R = 1 n < I)
120 Print I ;" ->
130 next I
140 end

125

LOG
FORMAT: LOG (X)

FUNCTION : Returns the log of X to the base 10.

Comments: None.

Example: 10 f o r 1=1 t o 10
2 0 fi = 1 o 9 < I >
3 0 P r i n t ; fl
4 0 n e x t I
5 0 e n d

, 126

MID$
FORMAT:

FUNCTION :

Comments:

Example:

MID$ (X$, X [,Y])

Returns the substring of X$ starting at character X and
ending at character Y.

The maximum length of a character string is 18.

1 0 0 f l $ = " 1 2 3 4 5 R B C D E v w x y z
1 1 0 B$ = m i d $ (R $ j 5)
1 2 0 P r i n t B$
130 end

127

NUMS
FORMAT : NUM$ (X)

FUNCTION : Converts the numeric value of X to its character
equivalent.

Comments: Do not exceed maximum integer value.

Example: 1 0 0 M = 9 9 9
1 1 0 B $ = " fi B C "
1 2 0 C $ = B $ + n u m $ < fi > + " K V "
1 3 0 P r i n t. C $
1 4 0 e n d

r u n
fi B C 9 9 9 y y

R e a d y

128

OUT
FORMAT : OUT <port number>, [<output data>[,..]] {CR |:}

FUNCTION : Sends data byte by byte to a port.

Comments: The output data may be the result of an expression. Care
should be taken with port numbers as both hexadecimal
and decimal numbers are used to refer to both ports and
data. Output to an incorrect port could damage a program
saved on tape or disk.

Example: 1 0 0 O U t St 2 0 7 Z: 1 0

129

PEEK
FORMAT:

FUNCTION :

Comments:

Example:

PEEK (X)

Returns the contents of memory address X.

Returns 8 bits stored in CPU memory address X.

18 0 A = p e e k (& F F F F)
118 Print- A
1 2 0 e n d

130

PEEKW
FORMAT: PEEKW (X)

FUNCTION : Returns 16-bits from CPU memory address X and address
X+1.

Comments: This will return both X and X + 1.

Example: 1 8 0 P o k e & 7 2 0 0 , & 3 0
1 i 0 P o k e &: f* 2 0 1 ? 4 0
12 0 fi = P e e k w<&7 2 0 0)
1 4 0 P r i n t i n t- (fi •••" 2.5 6 >
1 5 0 P r i n t fi a n d 2 5 5
1 6 8 0 n d

131

PI
FORMAT: PI

FUNCTION : Returns the value of Pi

Comments: Pi = 3.14159265359

Example: 10@ fi = s i n < P x /
1 1 0 P r l n t H
i z y 0 n d

132

RDSTS
FORMAT: RDSTS (X)

FUNCTION : Reads the statement indicated by the cursor from the
beginning.

Comments: Characters to the right of position x will not be read. The
end of the statement is indicated in the display by '00. If
X does not exhaust the statement, the string CR (’OD) is
attached.

Example: 1 0 e l s
2 9 P r i n t c u r s o r (5 > 1) 5 " H e l 1 o t h e r e ! "
3 0 l o c a t e 5 > 1

40 f o r C= 1 t o 13
5 0 A $ = r d s t $ < C >
6 0 P r i n t c u r s o r (5 f C + 5)
7 0 1 o c a t e 5 > 1
3 0 n e x t C
9 0 e n d

133

REG
FORMAT: REG (X)

FUNCTION : Returns the register value after a CALL statement has been
executed.

Comments: X can signify various registers:
0 AF
1 BC
2 DE
3 HL

Data is stored “ high-low.” Thus if Ar contains &2E and Fr
contains &30 then “ NEWAF” below will have &2E30. EX-
CHG (NEWAF) gives &302E and EXCHG (NEWAF) AND
255 gives &2E.

Example: 1 0 e l s
2 0 9 o s u b $ S E T C R L L : ’ P r e p a r e f o r c a l l
3 0 c a l l R O U T I N E , R F R E G , , , HLREG
4 0 R F = r e 9 < 0 >
5 0 H L = r e 9 < 3 >
6 0 P r i n t c u r s o r < 0 , 2) ? “ RFREG = S c " ; h e x $ < R F

" H L R E G = & " * h e x $ (H L)
7 0 e n d
3 0 $ S E T C R L L
9 0 R 0 U T I N E = St l 4BD
1 0 0 R F R E 6 = & 4 1 0 0
1 1 0 H L R E G = S 3 3 0 0
1 2 0 r e t u r n

134

RIGHTS
FORMAT : RIGHTS (X$, < length >)

FUNCTION : Returns a substring from the right side of X$ of specified
length.

Comments: In general all strings can be done with just the MIDS
instruction.

Example: 10 0 fi $ =" 1 2 3 4 5 f i BC DE u wx y z "
1 1 0 B $ = r i 2 h t- $ (fl $; 5 >
1 2 8 P r i fi t 8 $
1 3 8 e n d

r u n
•j i.,j x y z

R e a d y

135

RND
FORMAT:

FUNCTION :

Comments:

Example:

RND (X)

Returns a random number between 0 and X.

X is the seed. For most purposes, RND produces an acceptable
distribution of numbers. For extremely sensitive applications,
however, other methods of random generation should be used,
even to the point of special hardware.
When X is an integer, the value returned will be an integer
between O and X. When X is a real number, the value
returned will be a real number between O and X.

i 00 r a n d o m i z e
1 1 0 P = r n i j < 1 0 >
1 2 0 8 = r n d <: 10 >
1 3 0 P r i n t " r n d <•• 1

•• X
1 4 0 P r i n t " r n d 1.. l
1 5 0 e n d

136

RPT$
FORMAT:

FUNCTION :

Comments:

Example:

RPT$ (<repetitions>, X$)

Returns a string which consists of < repetitions> of X$.

This is useful for building long strings from a small pattern.

1 0 0 1 e n 3 0
1 1 0 X$ = r P t $ <3 8 ? "* " >
12 0 P r i n t X$
13 9 e n d
r IJ n

* * * + * *

137

SGN
FORMAT:

FUNCTION :

Comments:

Example:

SGN (X) {CR | :}

Returns the sign of X.

SGN (0) = 0; if X > 0 then SGN (X) = 1, otherwise SGN (X)
= - 1. X may be real or integer or hex.

1 0 0 ft = 1 9
1 1 0 P r i n t s 9 n < fi
1 2 0 ft = 9
1 3 0 Pr i n t s g n C fl
1 4 0 ft = - 1 0
1 5 0 P r i n t s 9 n < R
1 6 0 e n d

138

SIN
FORMAT:

FUNCTION :

Comments:

Example:

Returns the sine of X.

The range of values for X is ±2.8 E 16.

SIN (X)

1 0 0 fl = s i n
i i 0 Pr i n t
120 e n d
r u n
0 . 8 6 6 0 2 5 4
Re a d y

139

SQR
FORMAT: SQR (X)

FUNCTION : Returns the square root of X.

Comments: X can be a real number or an integer.

Example: 1 0 0 fi = 2
110 B = s q r < fl >
12 0 P r i n t " S QR<2 >
13 0 P r i n t. " S 0 R < 2) * S Q R
14 0 e n d

140

TAN
FORMAT: TAN (X)

FUNCTION : Returns the tangent of X.

Comments: The range of values for X is ±2.8 E 16.

Example: 1 8 8 X = 23
1 1 8 fi = t a n < X >
12 8 P r i n t ft
1 3 8 e n d

141

TIME
FORMAT: TIME

FUNCTION : Returns the amount of time since the system was powered
up. Value is in seconds.

Comments : The value returned is in seconds.

Example : i 0 0 fi I N = i n t < t im e / 6 0>
1 1 0 S E C = t i rn e m o d 6 0
t 2 0 P r i n t M I N ' " M I N " 5' S E C * 11 S E C
13 0 e n d

142

VAL
FORMAT:

FUNCTION :

Comments:

Example:

Converts a character string into its numeric equivalent.

The string must be a legal number in BASIC-F.

VAL (X$)

1 0 0 ft $ = " 1 0 0 "
1 1 0 B $ = " 5 5 "
12 0 P r i n t , fi $ + B $

1 3 0 P r i n t v a 1 < fi > + u a 1 (B $ >
14 0 e nd

143

VARPTR
FORMAT : VARPTR ({X | X$})

FUNCTION : Returns the actual memory address of a variable.

Comments: This function is required when machine language
subroutines are to access BASIC-F variables. After the ad
dress has been obtained it can be passed to the
subroutine by any of several methods.

Example: 1 0 0 fi *i = 2 5 5
1 10 B = u a r P t r (f i '»>
11! 0 C = P1 e a k 8
13 0 P r i n t. C
140 e nd

144

VPEEK
FORMAT: VPEEK (X)

FUNCTION : Returns the contents of video memory at location X.

Comments: Displays the data stored in video memory address X.

Example: i 0 0 p r i n t " "
1 1 0 P r i n t c u r so r < 0 ? 0 > 5 " fi "
1 2 0 U = v P e e k (& 3 8 0 0)
1 3 8 P r i n t " fi S C I I < " c h r $ (U > " > = "
i 4 p n d

145

XCHG
FORMAT: XCHG (X)

FUNCTION : Swaps the order of the upper and tower bytes of X.

Comments: Using XCHG moves original bits 0-7 (upper byte) to new
bits 8-15 (tower byte) and original bits 8-15 (tower byte) to
new bits 0-7 (upper byte)

Example: 1 9 0 X = 12 3
1 1 0 fi y. = X c h '3 < X >
1 2 0 P r i n t fi y.
13 0 e nd

146

Chapter 4 Application Section

4. Applications Section
This section contains a set of useful programs which will run on

your M5. They have all been tested by our staff. These programs
make use of the special features of the M5 and BASIC-F. Each
program has a statement of general function, a description of how
to run the program with a sample run, a description of how the
program runs and the program listing itself.

147

Chapter 4 Application Section

4.1. Loan Repayments
This program calculates the time needed to repay a loan. Given

the amount of the loan, the interest rate, the number of payments
made per year and the amount of each payment, the program will
return the length of time that it will take until the loan is completely
repaid. The program calculates the time according to the following
equation:

" V ioq (1 + 4,) / N
where Y = term of payment in years

P = principal
i = interest rate
N = number of payments per year
R = amount of each payment.

This could be used to calculate the length of time it would take to
pay off a mortgage. How many years would it take to pay off a mort
gage of $2 0 ,0 0 0 at 18% by quarterly payments of $1 ,0 0 0?

148

Chapter 4 Application Section

10 c l s
2 0 7
3 0 r e m c o m P u t- a t h e] e n g t h o t t i rn e
4 0 7 r e P a y a I o a n
50 7
6 0 1 o c a t e 5 , 5
7 0 P r i n t - " T e r m o f a 1 o a n "
8 0 P r i n t
9 0 7
1 0 0 r em i n P ut- t h e d a t a f o r t h e c a
1 1 0
1 2 0 i n P u t- " r e 9 u 1 a r P a y rn e n t i i ; R
1 3 0 i n p u t " P r i n c i P a 1 " * P
1 4 0 i n P u t " a n n u a 1 i m e r e s t r a t 0 "
150 i n P u t " n u m b e r o f P a y rn e n t •5 P 0 r
1 6 0 7

170 r e rn P e r f o r rn c o rn P u t a t i o n 3
1 8 8
1 9 0 V = - o g < 1 - <P + C I i 0 0) / <N + R > j /

1 0 0 / N) * N) >
2 0 0
2 1 0 r e m c o rn p u t e y e a r s a n d m o n t h s
2 2 0
2 3 0 M = i n t <V* 12 + 0 . 5 > s V 0 = l n t (M/ i 2 >
2 4 0 M = M- V0 * 1 2
2 5 0 P r i n t " T e r rn— i l a i I ~ ? '»0 ; " y e a r 5 >i

y

2 6 0 Pr i n t " a n d " ; M ■ " m o n t h s i i

2 7 0 P r i n t
2 8 0
2 9 0 i n P u t " O n c e rn o r 0 ? < y / n i i ■ V $
3 0 0 i f 1 e f t $ (V T , 1) = " y " t h e n g 0 t 0
3 8 5 7

3 1 0 P r i n t
3 2 0 P r i n t " d o n e >1

33 0 e n d

i o n

; N

+ 1

e a r s

149

Chapter 4 Application Section

4.2. Initial Investment
This program calculates the investment necessary to provide a

stated future value in a. specified time period. Suppose you want
to earn $10,000 from interest over 5 years, how much money
would you have to put in the bank to start with? For any given in
vestment, interest rate and time period the program calculates the
required-initial investment. The program requires that you enter the
time period, the goal total, the interest rate and the number of times
that the interest is compounded in one year. The program bases its
calculations on the following equation:

p = (1+ i/N)NY

where P = initial .investment
T = future value
N = number of times compounded per year
Y = number of years
i = interest rate

The interest rate must be entered as a whole value: for instance
8.5% is entered as 8.5. The number of years can include fractional
parts, such as 5.5 for five and one half years.

150

Chapter 4 Application Section

1 0 C 1 S
2 0 1 o c a t e j > 5
3 0 p r i n t " I n i t i a l i n me s t m e n t
4 0 p r i n t
50 ’
A 0 r e rn i n P u t d a t a f o r c o rn P u t a t i o n s
7 0 ?
8 0 Pr i n t
9 0 i n P u t " firnou n t. o f 9 o a 1 " ' T
1 0 0 i n P u t " # o f cornP oun d s P e r y e a r 11 5 H
i i 0 i n P u t " # o f y e a r s " 5 V
120 i n P u t " N o rn i n a 1 i n t e r e s t r a t e " ; I
130 J

1 4 0 r e rn P e r f o r rn c o rn P u t a t i o n s
1 5 0 ,1

1 6 0 I = I / N/ 1 0 0
170 ,1

1 3 0 P = T < i + n < n * v >
1 9 0 J

2 0 0 P r i n t
2 1 0 P r i n t " I n i t i a l i n y e s t rn e n t r e q u i r e d
2 2 0 Pr i n t " t o a c h i e u e 9 o a 1 t o t a l i s i "
23 8 P r i n t i n t <P * 10 0 + 0 . 5 > / 1 0 0
2 4 0 Pr i n t
2 5 0 P r i n t
2 6 0 i n P u t " U n e rn o r e t i rn e ? (y n) " ' V $
27 0 i t 1 e f t $ < V $, 1) = " y " t h e r, o t o 1 0
2 8 0 P r i n t
29 0 p r i n t " d o n e "
3 0 0 e n d

151

Chapter 4 Application Section

4.3. Regular Deposits
This program calculates the amount of each deposit required to

reach a goal total within a specified time period. Let us assume that
you wish to save $5,000 to buy a car. You wish to buy the car at
the end of one year and you want to know how much money you
need to put in the bank each month. Or let’s say that you wish to
save up the money for a down payment of $10,000 on your home.
You want to save the money over three years. How much must you
put in the bank each month in order to get the desired total at the
right time?

To use this program you must enter the values of the total, the
number of years and the interest rate. You must also specify the
number of times per year that you will make deposits. This allows
you to skip one or more months. For example, you may wish to
make 11 deposits per year, skipping December as your other ex
penses may be high that month. Or you may decide not to make
payments over a vacation month but spend the money on your holi
day. The interest rate that you enter must be expressed as a whole
value, such as ‘10’ for 10%, or ‘4.5’ for four and a half percent.
Years may be expressed as fractions as well, for example six mon
ths would be entered as ‘.5’ for half of one year. The calculation for
regular deposits is based on the following equation:

R = t ((1-H /N)Nn y - 1)

where:
R = amount of regular deposit
T = future value
i = interest rate
N = number of deposits per year
Y = number of years.

152

Chapter 4 Application Section

1 0 C 1 S

2 0 ’

3 0 r
4 0 r
5 0 r
6 0 ’

7 0 1 o c a t a 0 ? 5

e m c omP u t e t h e d e p o s i t s r e 4 u i r e d
e m t o a-c h i e m e a d e s i r e d t o t a 1 a t
e m s o m e f u t u r e d a t e

8 0 P r i n t “ R e 9 u 1 a r D e P o s i t - s c h e d y 1 e "
9 0 ’
1 0 0 P r i n t
1 8 5 ’
1 1 0 r e rn i n P u t- n e c e s s a r y d a t a
12 0 ’
130 i n P u t " i..j h a t. i s t h e d e s i r e d 9 i j a 1 11 5 T
1 4 0 i n P u t " w h a t. i s t h e i n t e r e s t r a t e " : I
1 5 8 i n P u t. " H o u many d e P o s i t s P e r y e a r H ; N
1 6 0 i n P u t " H o y m a n y y e a r s t o 9 o a d a t 0 “ ;
1 7 0 ’
1 8 0 r e m P e r f o r rn t h e c o rn P u t a t i o n s
1 9 0 ’
2 0 0 I = I / N / 1 0 0
2 10 R = T * I •••- < <1 + 1 > A < N * V) - 1 >
2 2 0 ’

2 3 0
2 4 0 ’
250
2 6 0 ’

r e m r o u n d o ft t o c ents

R = i n t- < R * 1 0 0 + 0 . 5 > / 1 0 0

270 Print
2 S 0 P r i n t " E a c h d e P o s i t rn u s t be $ " * R
2 9 0 ’
3 0 0 P r i n t
3 10 i n P u t " fi n o t h e r r u n < y / n > " * V %
3 2 0 i f 1e f t $< V $ 7 1> = " y " t h e n ot o 1 0
3 3 0 ’
3 4 0 end

153

Chapter 4 Application Section

4.4. Future Value of Regular Deposits
(Annuity)

This program calculates the total amount which will be saved if
deposits are made regularly. Assume that a payment is made to an
interest bearing account each month or at some other interval.
What is the total amount in the account at any given time? For ex
ample, assume that you put $75 from your pay into a special ‘rainy
day’ account each month. How much will you have saved after a
year and a half, or after five years? Or assume that your company
matches your $50 savings with a benefit in a company savings plan
at 8 %, how much will you save in three years? This program can
perform the necessary calculations. You must enter the amount of
each deposit, the number of deposits per year, the number of years
and the interest rate. The number of years may contain a fractional
part: for example three and a half years is entered as ‘3.5’ years.
The interest rate is entered as a whole value. For example, seven
and eight tenths of a percent is entered as 7 .8 ’ for the program.

This program assumes that interest is compounded with each
deposit according to the following equation:

T = total value after Y years
R = amount of regular deposit
N = number of deposits per year
Y = number of years
i = nominal interest rate

As an exercise, modify this program to calculate the result with in
terest compounded over different time periods. Many accounts to
day compound interest on a daily basis, rather than monthly. This
involves changing the value of Y for years and the way the interest
value is used.

where:

154

Chapter 4 Application Section

1 0 Pr i n t c in r f (1
2 0 7
3 8 1 o c a t e 0 j 5
4 8 P r i n t " F u t u r
5 0 P r i n t "
6 0 P r i n t
7 0 7 1 o a d d a t- a t
8 8 ?
1 0 0 i n P u t " fl m o u
1 1 0 i n P u t " n o m i
1 2 0 i n P u t " n u rn b
130 i n P u t " n u rn b
1 4 0
1 5 0 r e m c a 1 c u 1 a
1 6 0
1 7 0 I = I ••••■ H / 1 0 0
1 3 0
190 r e rn c a 1 c u 1 a
2 0 0
2 1 0 T = R + < < I + 1 >

i t s
< a n n u i t- y > "

li ■ li

? R

n U N

s i t

2 2 8 7
2 30
2 4 0
25 0
2 6 0
2 7 0
2 8 0
2 9 0
3 0 0
3 1 0

e a n n u 1 1 y

P r i n t " F u t u r e v a 1 u e = $ " *
P r i n t i n t < T * 1 0 0 + 8 . 5 > / 1 8 8
P r i n t
i n P u t " M o r e d a t a ? < y / n)

i f l e f t $ < V$, 1 > = " y " t h e n
P r i n t
P r i n t " d o n e "
e n d

" ? V $

9 O t O i 0

155

Chapter 4 Application Section

4.5. Remaining Balance on a Loan
This program calculates the balance remaining on a loan after a

specified number of payments has been made. You must input the
amount of each payment, the number of payments per year, the
amount of the principal, the annual interest rate, and the payment
number from which you wish to calculate the remaining balance.
The interest rate is entered as a whole value, thus 17% is entered
as 17 and 6.5% is entered as 6.5.

For example, if you have a loan of $10,000 at 12.5% interest and
your payments are $2 0 0 .0 0 per month, how much will you still have
remaining to pay after the 11th payment in the third year?

156

Chapter 4 Application Section

1 0 C 1 s
2 0 7
3 0 r arn c o m P u t s
4 0 7 o n a 1 o
5 0 7
6 0] o c a t a 5 , 5
7 0 P r i n t " R a m a
3 0 P r i n t-
9 0 7
1 0 0 r a m i n P u t
l i 0 7
1 2 0 i n P u t " r a g
130 i n P u t " P r i
1 4 0 i n P u t- n u m
1 5 0 i n P u t " an n
1 6 6 7
1 7 0 r a rn P a r f o r
1 3 0 7
1 9 0 I = I 1 0 0
2 0 0 7
2 1 0 i n P u t- " L a s
2 2 0 i n P u t

> W 1
" w h a

2 3 0 7
24 0 r a ni i n i t i a
2 5 0 7
2 6 0 B 0 = P
27 0
2 3 0 r e m a c c u m u
2 9 0 7
3 0 0 •for J 1 = 1 t
3 1 0 I 1 = i n t- (
32 0 fi = R - I 1
3 3 0 BO = B 0 - fi
34 0 n a x t J 1
3 5 0 7
3 6 0 P r i n t- " R a rn
3 7 0 Pr i n t i n t <
3 3 0 P r i n t
3 9 0 7
4 0 0 i n P u t- " 0 n c
4 1 0 i f l a f t $ (V
42 0 P r i n t
43 0 Pr i n t " d o n
14 g a n d

o a n

c i ? a 1 " ; P
a r o f p a y m a n t s P a r y e a r " ' N

; V $

157

Chapter 4 Application Section

4.6. Prime Factors
The following program calculates the prime factorization of a

given number. Prime factorization is the expression of a number as
the product of its prime factors. The method is to check all possible
factors from 2 up to the square root of the number. In each case
each factor is removed until the next factor is required or the fac
torization is complete. When this program detects a prime, it prints
out that a prime has been found. The program, as given, does not
make use of indentation. As an exercise, rewrite the program using
indentation. Also, the program contains a branch at 230, out of the
FOR NEXT loop. This is particularly bad programming style. As an
exercise, rewrite this program without branching out of a loop.

To run the program, simply type RUN and enter the number that
you want factored. After the factors have been printed, the program
will ask for another number to factor. When you are done, ask for 0
to be factored, and the program will halt. As an exercise, modify the
program to print out all the prime factors of the numbers from one
to 1000. Another good exercise would be to change the program to
display the current factor being tested at the top of the screen. Fac
tors already found could be displayed near the middle of the screen.
When all factors have been found, the program should wait till the
user is done, then continue. This will require that you use the cursor
control abilities of the M5, under BASIC-F.

The following short program is a stripped-down version of the
previous prime factors program. This program is used to generate
prime numbers only. As an exercise, see how many primes your
M5 can generate using this program. Can you think of any ways to
make this program faster? As an exercise modify this program to
print out only twin primes, i.e. those pairs of primes with only one
number between them, like 5 and 7 or 17 and 19.

158

prime factors10 0 r e m
1 1 0 '
1 20 e l s
13 0 ’
14 0 l o c a t e 4 > 5
145 Print "Prime Factor s"
1 47 P r i n t
150 i n P u t " l.iJ h a t n u m b e r d o y o u w a n t f a c t o r e d

" ; N
1 6 0 '
1 70 i f N = 0 t h e n e n d
18 0 i f N = 2 t h e n P r i n t " 2 i s P r i m e " : g o t o -3 0 0
190
2 0 0 M = 2 : SW = 8
210 I N = i n t < s q r < N + 0 . 5 > >
22 0 f o r L = M t o- IN
230 i f N / L = i n t < N L) t h e n -3 o t o 2 5 8
240 n e x t L
245 i f S W = 0 t h e n P r i n t N * " i s

3 0 0
P r i m e

247 P r i n t N : -3 o t o 3 0 0
250 S W = 1
260 i f I N < L t h e n 9 o t o 2 90
270 P r i n t L ; " * " *
280 M = L : N = N/ L : 9 o t o 210
290 P r i n t L
30 0 P r i n t i P r i n t : g o t o 158

120 c 1 s
145 P r i n t " P r i m e s "
147 H = 1
150 N = N + 2
2 1 8 I N = i n t < s 9 r < N + 0 . 5 > >
22 0 f o r L = 3 t o IN
230 i f M L = i n t. < N .••" L) t h e n 9 o t o 1 5 8
24 0 n e x t L
245 P r i n t N ?
30 0 g o t o 150

159

Chapter 4 Application Section

4.7. Long Number Arithmetic
This program allows your M5 to do simple arithmetic on very

large numbers. Normally the size of the numbers that can be handl
ed by your M5 under BASIC-F is limited by the BASIC-F interpreter.
Integers have a limited size. With this program you can represent
numbers of arbitrary size and do addition, subtraction and multi
plication with them. The only limit on the size of the numbers is the
memory capacity of your computer. In other words, except for the
space occupied by the program itself, you can use the entire mem
ory of your M5 to store 3 numbers using this program. This means
that you can store incredibly large numbers.

The program works by breaking the large numbers into compo
nents which are small enough to be held in normal integer variables.
These small parts of your number are stored in arrays. The arrays
are A, B, and C and are declared in line 210. Array C is twice as
large as A and B in order to accept large products of A*B. You can
change the size of A,B, and C by changing the values in lines 180
and 160. M must always be 2*N + 1 . Also, you can control the larg
est value in each part of the number by changing line 200. If you set
this value (P) to the maximum power of 10 that can be represented
on the M5 in BASIC-F, then you will be able to store the largest
number of digits possible with this program. The program itself is
extremely modular, and each section does only one task. The first
routine is used to read in numbers from the keyboard. When using
the program, zeros must be entered if the first part of the number is
not used. For example, the current listing of the program requires
numbers broken into 5 parts. If you want to enter the number 100,
the first four parts must all be 0, and they must be entered. As an
exercise you might try to modify the program so that only the last
number need be entered, to save time. The program has four more
subroutines. Each of them is called with a GOSUB. The first routine
is used to print the long numbers on the screen. The second is used
for addition, the third for subtraction and the fourth for multiplication.
There is no routine for division in the program. Notice that division
can be done by repeated subtraction. As an exercise add a new
subroutine to perform division by calling the subtraction routine until
the remainder is smaller than than the divisor. Print out the quotient
and the remainder. As another exercise, you may wish to convert
the input routine to use DATA statements, to save typing. Another
interesting addition would be the ability to perform several operations,
by reading in an expresion and then executing it one step at a time.

Remember, the numbers must each contain five groups of four
digits. The possible operations are + , - , and *.

160

1 0 0 r 0 n't n u rn b 0 r 0 P 0 r a t i 0 n s
1 1 0
1 2 0 c 0 n s 0 1 0 ? ? ? ? 3
130 c 1 s
1 4 0 7

150 i 0 c a t 0 4 ? • j
1 6 0 Print- "Lon 9 n umber " 0P E R A T IO N S "
1 7 0
1 3 0 L = 4 : N = 4 : M = 9
1 9 0
2 0 0 P = 1 0 0 0 0
2 1 0 d i rn A < N > > B < N > > C < M >
2 2 0 7

23 0 P r i n t i p r i n t
24 0 Pr i n t "Enter the first n u rn ber"
25 09 o s u b $L 0 A D J re rn read a n um b e r
2 6 0 for 1=0 to N : A < I>= C(I> : n e x t I
2 70 ,1

28 0 Print "Enter the s e c on d n u rn ber "
29 8 9 o s u b $ L 0 A D
30 0 f o r I = 0 t o N ! B (I > = C <I > : next I
318
32 0 i n P u t " i.i.l h a t o P e r a t o r ? " ? 0 P $
33 0
3 40 for 1=0 t o H : C (I) = A(I > : next I
35 0 9 o s u b $ S H O l.'j: r e rn Print a
3 6 0 Print
3 70 P r i n t O P $: re rn Pr in t oPerat or
3 8 0 for 1=0 to N: C(I)= B <I > : ne x t I
39 0 9 o sub $ S H 0 l.‘J J r e rn P r i nt b
400 Print
410 Print " = "
4 20 7
4 3 0 f o r I = 0 t o M: C < I) = 0 : n e x t
44 0 r e rn c a l 1 a P P r o P r i a t- 0 0 P
4 5 0 7

4 6 0 i f 0 P $ = " + " t h e n g o s u b $ A D D
4 7 0 i f O P $ = " - " t h e n 9 o s u b $ S U B
4 3 0 i f OP $ = " * " t h e n *3 o s u b $ M U L
4 9 0 9 o s u b $ H 0 l.i.l
5 0 0 P r i n t- ; P r i n t " d o n 0 H
5 1 0 7

5 2 0 e n d
53 0 7

1 0 0 0 ■$ L 0 N D
1 0 1 0 '
1 0 2 0 r e m r e ad a nu m b e r

161

1 0 4 0

10 50
1 0 60
1 0 70
1 0 8 0
1 0 9 0
1 1 0 0
2 0 0 0
2 0 1 0

2 020
2 0 3 0
2 0 4 0

2 0 50

20 6 0

2 0 7 0
2 0 80
2 0 9 0
2 1 0 0

2 1 1 0

3 0 0 0

3 0 1 0
3 0 20
3 0 3 0
3 0 4 0
3 0 50
30 6 0
3 0 7 0
3 0 3 0

3 0 9 0
3 1 0 0
3 1 1 8
3 1 2 0
4 0 0 0
4 0 10
4 0 2 0
4 0 30
40 40
40 50
4 0 6 0
4 0 7 0
4 0 3 0
4 0 90
4 1 0 0
4 1 1 0
5 0 0 0
5 0 1 9

P r i n t " e n t e r 5 9 r o u P s o f 4 d i b i t s
e a c h "
P r i n t
f o r I = N t o 0 s t e P - 1

i n P u t C < I >
n e x t I

r e t u r n

$SH0W
S U = 0
f o r K = M t o 0 s t e P - 1

i f C < K) = 0 a nd S W = 0 t h e n g o t o $ I 1
i f S W = 0 t h e n S W = l : P r i n t mi d f (num $
< C (K>) f 2) S : 9 o t o $ 1 1
i f C (K) = 0 t h e n P r i n t 11 0 0 0 0 " * : g o t o
" 1 1 "

Pr i n t r i g h t $ < " 0 0 0 0 " + m i d $ < n u m $■ (C (.
K) '> , 2) , 4 >

$ I 1

n e x t K
if SW = 0 then Print "0";
r e t u r n

?

$ A D D
r e m a d d i t i o n

C fl R R V = 0
f o r 1=0 t o N

C < I) = I > + B < I) + C A R R V
CflRRV = 0
i f C C I) > = P t h e n C (I > = C < I > - P : CflRRV

n e x t I
K = N + 1
C < K > = C fl R R V

r e t u r n
?

$ S U B
?

r e m s u b t r a c t i on

B R R W = 0
f o r 1 = 8 t o N

C < I > = fl < I) - B < I > - B R R W
B R R W = 0
i f C < I) < 0 t h e n C < I) = C < I > + P : B R R W=1

n e x t I
r e t u r n

$ MIJ L

162

5 0 2 0
50 30
50 4 0
5 0 5 0
5 0 6 0
5 0 7 0
5 0 8 0
5 0 90
5 1 0 0

5 1 1 0
5 1 2 0
5 1 3 0
5 1 4 0

r e m m u 1 t i P 1 y

CPRRV = 8

•for 1 = 0 t o N
CPRR V = 0
■ for J = 0 t- o N

C < I + J > = C < I + J > + H (I > B < J> +CPRRV
C P R R V = 0
i f C (. I + J) > P t h e n CPRRV = i n t < C (I + J > / P

CC I- : C < I + J > = C (I + .J > - C p R R V + P
n e x t- J
C < I + N + 1) = C P R R V

n e x t I
r e t u r n

163

APPENDIX A

CODE INFORMATION

CHARACTER CODES
Following are the ASCII representations of all characters stored and

displayed on the M5 computer.
To use this appendix, find the character you want to display. Then look at

the row of numbers and letters across the top and find the one that lines
up with your character. Now look to the left at the leftmost column of
numbers and letters for the corresponding number or letter. Combine these
two numbers or letters. The one you found first is followed by the second.

Let’s look at three examples. Verify they’re correct in the table below.

Character Character
code

$ &24
H &48
+ &2B

Pi
I

9

HB
DEF

BCDEF

164

APPENDIX A

DEC (HEX) CODE

32 (20)
33 (21) !
34 (22) "
35 (23) #
36 (24) $
37 (25) X
38 (26) &
39 (27) ’
40 (28) (
41 (29))
42 (2A) *
43 (2B) +
44 (2 0 ,
45 (2D) -
46 (2E) .
47 (2F) /
48 (30) 0
49 (31) 1
50 (32) 2
51 (33) 3
52 (34) 4
53 (35) 5
54 (36) 6
55 (37) 7
56 (38) 8
57 (39) 9
58 (3A) :
59 (3B) 5
60 (3 0 <
61 (3D)
62 (3E) >
63 (3F) ?
64 (40) 3
65 (41) A
66 (42) B
67 (43) C
68 (44) D
69 (45) E
70 (46) F

DEC (HEX) CODE

71 (47) G
72 (48) H
73 (49) I
74 (4A) J
75 (4B) K
76 (4 0 L
77 (4D) M
78 (4E) N
79 (4F) 0
80 (50) P
81 (51) Q
82 (52) R
83 (53) S
84 (54) T
85 (55) IJ
86 (56) V
87 (57) w
88 (58) X
89 (59) Y
90 (5A) z
91 C5B) [
92 (5 0 \
93 (5D)]
94 (5E) /\

95 (5F)
96 (60) t

97 (61) a
98 (62) b
99 (63) c

100 (64) d
101 (65) e
102 (66) f
103 (67) g
104 (68) h
105 (69) j
106 (6A) j
107 (6B) k
108 (6 0 l
109 (6D) m

DEC (HEX) CODE

110 (6E) n
111 (6F) o
112 (70) p
1'13 (71) q
114 (72) r
115 (73) s
116 (74) t
117 (75) u
118 (76) v
119 (77) w
120 (78) x
121 (79) y
122 (7A) z
123 (7B) <
124 (7 0 !
125 (7D) >
126 (7E) ~
127 (7F) <
128 (80) ■
129 (81) O
130 (82) ♦
131 (83) *
132 (84) -v
133 (85) x
134 (86) T
135 (87) |
136 (88) -
137 (89) H
138 (8A) h
139 (8B) +
140 (8 0
141 (8D)
142 (8E)
143 (8F)
144 (90)
145 (91) -
146 (92) -
147 (93) ■
148 (94) I

165

l
 j

r
t

APPENDIX A

DEC (HEX) CODE DEC (HEX) CODE DEC (HEX) CODE

149 (95) 1 192 (CO) 235 (EB) *
150 (96) 1 193 (Cl) !*i. 236 (EC) A
151 (97) ■ 194 (C2) £ 237 (ED) y
152 (98) i 195 (C3) f 238 (EE) k.
153 (99) yr 196 (C4) Yl 239 (EF) r
154 (9A) a 197 (C5) * 240 (FO) —
155 (9B) ► 198 (C6) 4 241 (FI) _
156 (90 199 (C7) K 242 (F2) a.
157 (9D) \ 200 (C8) 6 243 (F3) m
158 (9E) 201 (C9) 4 244 (F4) 1
159 (9F) J 202 (CA) ij. 245 (F5) 1
160 (AO) \ 203 (CB) 0 246 (F6) 1
161 (Al) fi 204 (CC) ».i 247 (F7) ■
162 (A2) t 205 (CD) 248 (F8) V
163 (A3) 5 206 (CE) l 249 (F9) ,«
164 (A4) .V 207 (CF) 250 (FA) x
165 (A5) ft 208 (DO) %. 251 (FB) H
166 (A6) ft 209 r o i) 252 (FC) A
167 (A7) $ 210 (D2) 253 (FD) 'A
168 (A8) 0 211 (D3) o 254 (FE) k
169 (A9) i=i 212 (D4) u. 255 (FF) r
170 (AA) U 213 (D5)
171 (AB) 8 214 (D6) £
172 (AC) •J 215 (D7) I
173 (AD) 216 (D8) 0
174 (AE) ♦ 217 (D9) 0. DEC-*-denotes base 10
175 (AF) ■ 218 (DA) A HEX-*-denotes base 16
176 (BO) 1 219 (DB) 2
177 (Bl) % 220 (DC) i
178 (B2) £ 221 (DD)
179 (B3) 0 2 2 2 (DE) P-
180 (B4) 6 223 (DF) *
181 (B5) 224 (EO) JS
182 (B6) ¥ 225 (El) •
183 (B7) I 226 (E2) 9
184 (B8) t 227 (E3) ♦
185 (B9) ft 228 (E4) S
186 (BA) 229 (E5) /
187 (BB) 230 (E6) \
188 (BC) 231 (E7) X
189 (BD) H 232 (E8) zz
190 (BE) ¥ 233 (E9) A
191 (BF) 6 234 (EA) *

166

APPENDIX B

COLOR CODES

Color Color code
No color 0
Black 1
Green 2
Light green 3
Deep blue 4
Light blue 5
Deep red 6
Cyan 7
Red 8
Light red 9
Deep yellow A
Light yellow B
Deep Green C
Purple D

* Gray E
White F

167

APPENDIX C

CONTROL CODES
These are functions that control the screen, cursor and a few other

specialized functions. When using control functions directly after a READY
prompt, press the CTRL key and the control key simultaneously. But when
using control codes in a program (for example, in a PRINT statement), first
press the CTRL and SHIFT keys before pressing the control key. Also
enclose the control character in double quotes.

Keyboard
Key

Base
10

Base
16

Function Program Usage
Display

0 00 Ignore
A 1 01 Ignore (3
B 2 02 Return cursor to beginning of current line
C 3 03 Scroll screen display down a
D 4 04 Shift screen display left IS
E 5 05 Scroll screen display up is
F 6 06 Shift screen display right is
G 7 07 Bell [9
H 8 08 Backspace 11
I 9 09 Tab the cursor eight spaces t l
J 10 0A Move cursor down one line y
K 11 0B Move cursor to home position i a
L 12 OC Clear screen display IS
M 13 0D Same as RETURN key
N 14 0E Move cursor to beginning of next line tsi
0 15 OF Change to standard mode UJ
P 16 10 Change to insert mode is
Q 17 11 Change to multi-color mode (El
R 18 12 Change to Gil graphics mode IS
S 19 13 Change to Gl graphics mode a
T 20 14 Return to text mode u
U 21 15 Change to visible screen m
V 22 16 Alternates between the visible and

invisible screens, input is sent
to the displayed screen

iy

w 23 17 Same as RETURN key 161

X 24 18 Delete characters to the right of cursor

Y 25 19 Alternates between the visible and invisible
screens only

UH

z 26 1A Writes input to the alternate screen a
[27 1B Ignore

28 1C Right arrow

] 29 1D Left arrow

30 1E Up arrow T

31 1F Down arrow l

168

APPENDIX C

Coding sheet for 8x8 pixel pattern code

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

169

APPENDIX C

Coding sheet for 16 x 16 pixel pattern code

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 _j____ I__
1 1

_____ i _i_ __L
2 2

_____ i _j_ I
3 3

[I
4 4

_____ i _ l_ I
5 5

_____ i _j_ I
6 6

i _l_ I
7 7

i _|_ I
8 8

i _j_ I
9 9

i _ |_ I
A A

_____ i _j_ . l
B B

i I I
C C

i I l
D D

i I I
E E

i I I
F F

i I I

0 1 2 3 4 5 6 7 8 9 A B C D E F

170

APPENDIX D

CRT LAYOUT COORDINATES

CRT Screen Layout Sheet (Characters)

£ O T" CM CO * IT) (0 N CO 0) o - CM CO •XT in CD Cm CO 05 o
CM

CM
CM

CO
CM %

m m

o
CO

o
CO

CO
CNJ

05
CM

CO
CM

CO
CM

cm
CM

Cm
CM

CO
CM

CO
CM

m
CM

in
CM

CM
xj-
CM

CO
CM

CO
CM

CM
CM

CM
CM

CM CM

O
CM

CD
CM

a> 05

CO CO

fv

CD CO

in LO

xf x»

CO CO

CM CM

- £

o o

0) 0)

GO CO

IS IS

(0 0

1C 0

CO CO

CM CM

- -

o o
xy
/ y O r- CM CO 10 0 Is 00 0) o £ CM CO XT in CD CO 05 o

CM CM
CM
CM

CO
CM

y

>-\

171

APPENDIX D

CRT Screen Layout Sheet (Pixels)

172

APPENDIX E

KEYBOARD KEY CODES

Key Codes

/ C___

® © © © @ ® © @ @ l © ® l © («

— 0 ® © © © © © © ® ® © © ©

H ® © © © © © © © © © © © (“

---- H O [33] (34] [̂ 5) [36) [37] (38̂1 [39) (40) (45) [46] 5 7) (

5 □

l 8 1

■8

These key codes are ascertained using INKEY(1)

The codes of the shaded keys are known using INKEY(1). If more than two of these keys are pressed
simultaneously, the sum of their key codes is returned. For example, if the FUNC and CTRL keys are
pressed at the same time, “ 3” is returned (2 + 1).

APPENDIX E

Alphabetic characters with SHIFT key not pressed

. S © © 0 © © - © © Q l © © ® { D ̂ ̂ 1 -

; © 0 © :© D 0 0 Q t d :

Alphabetic characters with SHIFT key pressed

_ / msMssssms

R | A; ‘slfpl [f) G-. Ik1 ' j,: IK- fU 1+ 1 T) C~1
© © § : ®jg ® ® mb © ® q

APPENDIX E

Graphic characters available with SHIFT key not pressed

Graphic characters available with SHIFT key pressed

175

APPENDIX F

POUT I/O TABLE

POUT Number Summary
Z80CTC

01 Channel # 1.... peripheral timer
02 Channel #2 ... I/O clock
03 Channel 3 ... VDP

VDP TMS9918A
11 Status port
11 Screen base address and control port
11 VRAM address port
10 Data read port
10 Data write port

TONE GENERATOR
20 Tone generator control

KEYBOARD
30 Row 0
31 Row 1
32 Row 2
33 Row 3
34 Row 4
35 Row 5
36 Row 6

JOYPAD/ATTACK BUTTON
37 Input joypad direction

RESET/HALT KEY
50 Reset/Halt key data port (bit 7)

CASSETTE
RECORDER

50 Output port
50 Input port
50 Output port

PERIPHERAL
I/O
40 Data output
50 Strobe output
50 Printer busy

176

APPENDIX G

MEMORY MAP

Memory map

Online main memory

0000

2000

4000

6000

7000

8000

FFFF

M5
(8 kB internal ROM)

External ROM cartridge
(maximum 20 kB)

4kB internal RAM

4KB external
RAM

Extended external RAM
(maximum 32 kB)

ROM area

RAM area

177

APPENDIX G

VRAM (video RAM) memory map
Layout I

0000

2000

2800

3000

3800

3B00

3B80

3C00

3F00

3F80

4000
Layout 1 remarks— applicable when

the 8 expanded screens are used
(uses addresses &0000 to &1 FFF)

Free area

Sprite pattern code table (2048
bytes— both screen buffers 0 and 1)

Character pattern code table (2048
bytes— screen buffer 0)

Character pattern code table (2048
bytes— screen buffer 1)

Character to ASCII relationship table
(768 bytes— screen buffer 0)

Sprite attribute table (128
bytes— screen buffer 0)

Character color table (32
bytes— screen buffer 0)

Character to ASCII relationship table
(768 bytes— screen buffer 1)

Sprite attribute table (128
bytes— screen buffer 1)

Character color table (32
bytes— screen buffer 1)

178

APPENDIX G

Layout II

0000

1800

2000

3800

3B00

3B80

3C00

3F00

3F80

4000

Gil mode color table (6 kB)

Sprite pattern code table (2 kB)

Gil mode pattern code table (6 kB)

Pattern code table (screen buffer 0)

Sprite attribute table

Character color table

Pattern code table (screen buffer 1)

Sprite attribute table

Character color table

*

*

Note: * signifies color table in other
than Gil mode

179

APPENDIX H

ERROR CODES

ERROR
CODE ERROR SUMMARY REASON

ERR 1
ERRNF

FOR .. NEXT error • FOR-NEXT does not correspond

ERR 2
ERRSY

Syntax error • Non-existent command

ERR 3
ERRRG

Subroutine error • CLEAR used in the subroutine
• Jumped to subroutine using a GOTO
• GOSUB-RETURN does not corres

pond
ERR 4
ERROD

READ error in
DATA statement

• Insufficient data
• Missing DATA statement

ERR 5
ERRIF

Variable type
mismatch

• Wrong type of value given for
statement variable

ERR 6
ERROV

Overflow • When multiplying — answer is
correct but beyond the negative limit.

ERR 7
ERROM

Memory exhausted • Program is too long
• Too many variables

(reduce the number)
• Too many subroutines

(reduce the number)
ERR 8
ERRUL

Missing line number • Missing destination for GOTO or
GOSUB

ERR 9
ERRBS

Array variable error • Error in array statement
• Letter accompanying array variable

outside scope of the statement
ERR 10
ERRDD

Array variable error • Same variable set twice

ERR 11
ERRDZ

Division by 0 • Divided by zero

ERR 12
ERRID

Inappropriate direct execution
statement

• Wrong direct execution command
(execute wrong program)

ERR 13
ERRTM

Inappropriate data item • Characters were provided when
numerics were expected, or vice versa

ERR 14
ERROS

Stack overflow • Stack space exhausted
• No stack area left for the PAINT

statement

180

APPENDIX H

ERROR
CODE ERROR SUMMARY REASON

ERR 15
ERRST

Character string length error • Character string too long or becomes
too long during calculation

• Substituted a character string larger
than the left hand variable

ERR 16
ERRUD

Array variable error • Used an array variable which has not
yet been allocated

ERR 17
ERRDL

Redundant label • Used the same label more than once

ERR 18
ERRTR

Tape read error • Tape read error
• Reset during tape read operation

ERR 19
ERRDM

Wrong screen display mode • Wrong screen mode chosen from
Gl, Gil, text or multi-color.

ERR 20
ERRSP

Sprite error • Tried to see or move a sprite that
has been erased

ERR 21
ERRNS

Stack error • Does not occur.

ERR 22
ERRUR

REPEAT..UNTIL error •REPEAT..UNTIL does not match

ERR 23
ERRTO

Timeout error • INPUT statement timed out
• Response not received from floppy

disk in time.
ERR 24
ERRRE

RESUM error • Executed RESUM when no error
occurred

ERR 25
ERRDF

INPUT error • Pressed RETURN key without keying
in any data

181

ERROR
CODE ERROR SUMMARY REASON

Error
30 SIO communications error • Wrong input data

Error
100

Channel unavailable • All channels in use— appears when
OLD, VERIFY, SAVE, or LIST are
attempted

Error
101

Specified channel not open • Channel may not be OPENed for
data input

Error
102

Channel already in use • You have tried to allocate more than
one I/O device to a channel

Error Specified device already in • You have tried to use multiple chan
103 use nels with the ACMT
Error
104

Improper file name • Non-existent device
• File name too long

Error
105

Improper access • PUT or GET used with a device
which cannot PUT or GET

• You have randomly accessed a
device which only handles sequential
access

Error
106

Wrong file • A file name already used cannot be
reused on the same disk

Error Communications process • Information transfer to disk not pro
107 error ceeding correctly
Error
131

Improper drive number • The FD-5’s drives are numbered
0 and 1

Error
132

Incorrect file name • Zero-character file names are not
permitted with the FD-5

Error
151

Exceeded record • You have tried to read or write
across more than one record

Error
152

Data finished • You have attempted to read out data
which has not been input

Error
154

No space on the disk • There is no empty field on the disk;
file may not be expanded. Unneces
sary files may be erased with KILL

Error
155

Too many files • The disk file capacity has been
exceeded. Capacity is 108 files

Error
156

Record not finished • You have randomly accessed a
record before access to the previous
record has been completed

182

ERROR
CODE ERROR SUMMARY REASON

Error
160

No empty channel • No more than four files may be
simultaneously OPENed with the
FD-5

Error
170

No relevant file •The specified file is not on the disk

Error
171

File already in use • Specified file is in use on another
channel

Error
172

File already exists •The file is already on the disk

Error
180

Readout prohibited • You have tried to read a protected
file

Error
181

Entry prohibited • You have tried to enter to a protect
ed file

Error
182

Erase prohibited • You have tried to erase a protected
file

Error
190

Wrong disk • The file has been transferred to
another disk

Error
191

Panic • Unexpected fault during normal
operations. Transfer from the disk
has possibly gone haywire

Error
214

Abnormal sounds • Mechanical problem with reading to
or writing from the disk

183

$
ABS (F)
ASCII (F)
ATN (F)
AUTO
BCOL
CALC (F)

CALL
CDBL (F)
CHAIN
CHR$ (F)
Cl NT (F)
CLEAR
CLIST
CLOSE
CLS
COLOR
CONSOLE
CONT
COS (F)
CURSOR (F)
DATA

DEL
DIM
DRAW
END
ERR (F)
ERRL (F)
ERRL$ (F)
EVENT
EVENT ON/OFF
EXE (F)
EXP (F)
FOOL
FIX (F)
FOR..TO.. [STEP]
FRE (F)
GCOPY
GET
GINIT
GMODE
GMOVE
GOSUB
GOTO
HEX (F)
IF..THEN..ELSE
INKEYS
INP (F)
INPUT
INSTR (F)
I NT (F)
KILL
LEFTS (F)
LEN
LEN (F)
LET
LIST
LN (F)
LOC
LOCATE
LOG (F)
MAG
MIDS (F)
NEW

Command or
Function

Definition Abvr. Page

Remark statement or label name..
Returns absolute value of X a.............
Returns ASCII code for first character of a string as...........
Returns arc tangent of X at.............
Automatic line numbering a..............
Sets screen background color b..............
Performs BASIC-F operations on an expression given as a ca...........
string
Transfers program control to a specific machine address ca...........
Converts an integer to a real number cd...........
Retrieves program from tape or disk and executes ch...........
Returns character with internal code X ch...........
Converts a real number to an integer c i............
Clears section of memory for PAINT/character buffer cle..........
Lists in upper case letters cli............
Ends file usage c l.............
Clears screen...
Sets up character color (Gl and Gil modes) col..........
Enables/disables keyboard function keys cons........
Restarts program after STOP or keyboard interrupt c
Returns cosine of X co............
Moves curser to specified co-ordinates c
Stores constant information used by program and accessed d.............
by READ
Deletes lines from current program in memory de...........
Allocates memory for an array di............
Draws a line on the screen dr...........
Indicates the end of a program and halts execution e.............
Returns error code of the most recent e rro r..
Returns the line number of the most recent error..
Returns line label of most recent error..
Sets event timer interrupt interval ev...........
Enables/disables event timer interrupt..
Executes a BASIC-F statement having string representation ex...........
Calculates the function e* ex...........
Sets character color or graphics display color fc
Returns integer portion of X fi.............
Performs many iterations of a section of the program f.~ to ~ s .
Returns information on memory usage fr............
Prints the current screen image on the printer gc...........
Reads data from channel to variable ge...........
Enters graphic mode gi.............
Sets up graphics display mode gmod.....
Moves graphics cursor gm...........
Transfers control to a subroutine gis..........
Transfers program control to line number/label in statement g.............
Returns hexadecimal equivalent of X h.............
Evaluates the conditional expression if - 1. ~ e ..
Returns current character from keyboard ink...........
Inputs a byte from a po rt..
Assigns alphanumeric data from keyboard to variables i...............
Searches string STR$ for first occurrence of string SUB$ ins...........
Returns integer portion of a variable i..............
Deletes files k..............
Returns left substring of X$ lef............
Resets the maximum length of string variables le............
Returns length of character string I...............
Assigns the result of an expression to a variable..
Lists a file to another file, the printer or screen I..............
Returns the natural log of X ...
Moves sprite-number to specified GR co-ordinates...
Moves cursor to specified line and column lo............
Returns log X to the base 10 lo............
Changes sprite size and format m.............
Returns substring of X $ between X and Y m............
Clears the current program and memory contents..

17
103
104
105

18
19

106

20
107
21

*108
109
22
23
24
25
26
27
28

110
29
30

31
32
33
34

111
112
113
35
36

114
115
37

116
38

117
39
40
41
42
44
45
46

118
47

119
120
48

121
122
49

123
50

124
51
52

125
53
54

126
55

127
56

184

Command or
Function

Definition Abvr. Page

NEXT Ends repeated executions initiated by FOR within a program n................................... 57
NUM$ (F) Converts numeric value of X to character equivalent nu................................. 128
OLD Reads file from external memory o.................................. 58
ON ERROR GOSUB.. Transfers control to line number on error detection... 59
ON EVENT GOSUB.. Calls subroutine when event timer interrupt occurs................. 60
ON..GOSUB.. Evaluates expression and branches to nth line number... 61
ON..GOTO.. Evaluates expression and branches to nth line number... 62
ON..RESTORE.. Sets data pointer to data group depending on expression.. 63
OPEN Opens user files op................................ 64
OUT Sends data byte by byte to a port ou................................ 129
PAINT Paints area indicated by GR co-ordinates pa................................ 65
PEEK (F) Returns contents of memory address X .. 130
PEEKW (F) Returns 16 bits from CPU memory address pe................................ 131
PI (F) Returns the value of P i... 132
PLOT Displays dot at specified GR coordinates pi.................................. 66
POKE Writes data directly into specified memory locations... 67
POKEW Writes data to CPU memory po................................. 68
PRINT Puts text in screen display buffers p................................... 69
PUT Assigns binary form to a variable and executes it pu................................ 70
RANDOMIZE Resets the seed for the random number generator ra................................. 71
RDSTS (F) Reads statement indicated by cursor rd................................. 133
READ Loads data from DATA statements into variables rea............................... 72
RECORD Record to be next assigned rec............................... 73
REG (F) Returns register value after CALL is executed... 134
REM Stores programmer comments within the program... 74
RENUM Changes the line numbering of the program ren............................... 75
REPEAT Sets up a loop ending in a logical test rep............................... j q

RESTORE Resets data pointer for data item groups in DATA statements res................................ 77
RESUME Bypasses an error resu............................. 78
RETURN Returns program control after GOSUB has been called re................................. 79
RIGHTS (F) Returns substring from right side of X$ ri................................... 135
RND (F) Returns a random number between 0 and X rn................................. 136
RPT$ (F) Returns a string of repetitions of X$ rp................................. 137
RUN Executes the current program r................................... 80
SAVE Writes to external memory sa................................. 81
SCOD Assigns numeric code to sprite-number sc................................. 82
SCOL Colors sprite-number... 83
SG Activates tone and noise generators... 84
SGN (F) Returns sign of X sp................................. 138
SIN (F) Returns the sine of X .. 139
SLEEP Stops execution for specified sleep time si.................................. 86
SQR (F) Returns square root of X sq................................. 140
STCHR Assigns pattern-code to character-code stc................................ 87
STEP Stops/resumes execution at statement change ste............................... 88
STOP Halts execution of a program from within a program s................................... 89
SWAP Transfers contents of variables sw................................ 90
TAB Tab over X characters ta................................. 91
TAN (F) Returns tangent of X... 141
TAPE Accesses assembler supplied on external memory ta................................. 92
THETA Sets mode for trigonometric functions to degrees/radians th................................. 93
TIME < Returns time since powering up in seconds ti................................... 142
TRACE Displays trace of executed line numbers during program t 94

execution
TYPE Defines the type of a variable ty.................................. 95
UNTIL Marks the end of a repeat loop u................................... 98
VAL (F) Converts a character string to its numeric equivalent v................................... 143
VARPTR (F) Returns the actual memory address of a variable var............................... 144
VPEEK (F) Returns contents of video memory at X vp................................. 145
VERIFY Compares programs in memory v................................... 97
VIEW Creates a viewport on the display screen vi.................................. 98
VPOKE Outputs data to the video memory vp................................. 99
VSAVE Writes video RAM data to tape vs................................. 100
WAIT Limits time computer will wait for input from keyboard w -j 01
XCHG (F) Swaps order of upper and lower bytes of X xc................................. i 46

185

SORD COMPUTER CORPORATION
SAITO BLDG. 2F, 14-6, KYOBASHI 3-CHOME,
CHUO-KU, TOKYO 104, JAPAN
PHONE: (03) 562-6061
TELEX: 2522745 (SORD J)

GDE-0083-1 (87100675) 1513 Printed in Japan June 84’NK

