
Creative Computer

m.s
BASIC-1 Manual;

Easy BASIC for Beginners

NO TICE:
•Throughout this manual, the command prompt as it appears on the

screen is shown as an “ A” , indicating the letter or alphabet mode.
Due to a last minute design change, the command prompt for this
mode has been changed to a “ L” . It will appear on your screen as
shown below.

•Press the FUNC and “ 2 ” keys simultaneously for caps Io c k .

Copyright © 1983 by SORD COMPUTER CORPORATION
All rights reserved. Printed in Japan.
No part o f th is publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or
by any means, electronic, m echanical, photocopying,
recording, or otherwise, w ithout the prior written
perm ission of SORD COMPUTER CORPORATION

INDEX

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Getting Started In BASIC
2-1 Getting Started in Basic..6
2-2 The Keyboard... 7
2-3 Display Characters on the Screen... 7
2-4 Scrolling Function...9
2-5 Repeat Function... 10
2-6 Delete Function.. 10
2-7 Editing Function.. 12
2-8 CTRL Key Function.. 13
2- 9 Drawing Graphics...16

W hat Can I Do with BASIC?
3- 1 Let’s Do Some Calculations...18
3-2 Important Notes about Calculations....................................19
3-3 Error Messages..20
3-4 Continuous Calculations.. 20
3- 5 Other Usages of the PRINT Command...............................21

W hat Is a Variable?
4- 1 What Is a Variable?... 22
4- 2 Letter Variables...22

W hat’s in a Program?
5- 1 Steps in Making a Program..24
5-2 Let’s Make a Program..24
5-3 Let’s Look at the Program Again...25
5-4 Let’s Make It Look More Like a Program.............................26
5-5 Line Numbers... 29
5-6 Corrections..30
5-7 Using the INPUT Command in Another Way...................... 32
5-8 Using Messages to Make Your Program

More Understandable.. 35
5- 9 Other Usages of the LIST Command.................................. 37

How to Save a Program
6- 1 Saving Your Program..38
6-2 Verifying Your Program.. 39
6- 3 Loading Your Program..41

Various Commands
7- 1 Various Commands.................................. 44
7-2 Endless Loop.. 44
7-3 Looping Three Times..46

Introduction... 4

1

L

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Appendix

Dice Gam e
8-1 Game Program..48
8-2 RND Function..48
8-3 “ Computer” and Dice Game... 49
8-4 Saving Frequently Used Code as

Subroutines..51
8-5 How Many Times Did Each Number Come Up?...............54
8-6 Array Variables...55
8- 7 Reading Data in Your Program...57

W hat’s a Character String?
9- 1 What’s a Character String?.. 60
9-2 Playing with Character Strings.............................. 60
9-3 Counting Characters.. 62
9-4 Looking At Only a Portion of a Character String................63
9-5 Jumping Around in Our Character String Program...........64
9-6 Hints to Understand Your Program Better.........................65
9-7 An Easy Software Times...66
9-8 Printing Characters on the Screen..................................... 66
9-9 Using the TAB Function.. 68
9- 10 Various Character String Functions...................................69

Dice Graphics
10- 1 Dice Graphics..70
10-2 Rolling D ice ... 74
10-3 Coloring the Die Face... 74

C onclusion ... 76

A UFO Game
B Color Codes
C Character Codes
D Commands
E Functions
F Control Codes
G ASCII Character Codes
H Error Messages
I Mathematics Tutor Program

CHAPTER
1___

CHAPTER
8

CHAPTER
10

CHAPTER
11

2

3

Chapter 1 Introduction

1. INTRODUCTION
BASIC is a computer language. Pretty simple. BASIC allows anyone to

communicate with the M5 computer. Still simple. We’re going to learn how
to use BASIC. Still sound simple? It is.

This version of BASIC, BASIC I, which leaves out some difficult and com­
plicated commands, is designed for users who have never before used
BASIC or who have just started to learn programming.

But that doesn’t mean it isn’t useful. Try it out! Many things can be done
with BASIC I. Games. Math. Keeping track of calorie intake. It can be fun
for the whole family!

BASIC I is basically a subset of a larger set of BASIC commands. When
you master this subset, you can progress to the next step. Don’t worry
about having to know all kinds of commands or computer talk. Just relax.
The only think you should know at this point is that commands tell the M5
computer what to do.

Before you master BASIC, you’ll need to learn how to use the keyboard
and how to write programs. As the old proverb goes, “ Practice makes per­
fect” . We hope you will become accustomed to BASIC commands soon.

This manual is written in everyday English with clear examples so that
even older school children can understand it easily. This makes it ideal for
parents and kids to study together. OK! Let’s get ready to have some fun
with the M5! But what can we do with BASIC I? Well, we’re going to ex­
plore some simple examples and have some fun with some games that’ll
help us to understand BASIC I better. One game we’ll explore, add to and
learn from is a dice game.

r ------------ 1

I I
I ♦ I
I I
i . ------------ 1

r ---------^

I ♦ I
I I
i ♦ I
L.------------ 1

If you look in Appendix A, you’ll find a UFO game. Wait just a little
before you try to use it. First, go through this manual. It’ll tell you exactly
how to get started the right way. And by the time you get ready to enjoy the
UFO game, you’ll understand exactly what to do and why you’re doing it.

4

Chapter 1 Introduction

We’re ready to get started. Or are we? Look at the type of cartridge in­
serted into the M5 console. In order to work with BASIC I, you must insert
the BASIC I program cartridge into the console. But first turn off power to
the computer. In fact, you should always turn power off before inserting or
taking out a cartridge. Otherwise, you might have problems. For the first
several times especially, be very careful when you insert or pull out the
cartridge because 'the connector can be damaged. Be sure to insert the
cartridge with the BASIC I label facing you. Push firmly.

After you master BASIC I, you can procede to BASIC G which has
advanced BASIC commands for games and graphics, or to BASIC F for
scientific calculations.

Chapter 2 Getting Ready

2-1. Getting Started in Basic
After connecting the console to your television set and inserting the BASIC I

program cartridge, turn the power unit ON. Doing this will supply power to
the M5 console. At this point, the M5 system is ready to input and run pro­
grams. The “ BASIC I Ready” message should be displayed at the upper left
hand corner of the screen. But if the system has not been connected properly,
obviously it will not function correctly. So if the ready message is not
displayed, immediately turn off the power unit and check the connection
between the television and M5 console. Also check that the BASIC cartridge
is plugged in correctly.

The “Basic-1 Ready” message is the first indication from the system
that it is ready to run BASIC I programs.

If the “A” cursor displayed on the left-hand side of the screen is difficult to
see, execute the following command (when power is on, the M5 is in the Gl
mode):

Gl, Gil Multicolor mode
VIEW 1 , 0 , 3 1 , 23 RETURN

Text mode

VIEW 1 , 0, 3 9 , 2 3 , RETURN

Pushing the CTRL key and the F key simultaneously will cause the screen
display area to shift to the right by one character space. If this is done after
the VIEW command has been input, but before the return key is pressed, the
entire display will be shifted to the right by one character, and no characters
previously displayed in the “ 0” position will remain.

6

I Chapter 2 Getting Ready

2-2. The Keyboard
Now look at the M5 console. What you’ll notice right away is the type­

writer-like keyboard. But don’t assume it is exactly identical to a typewriter.
Eventually, you’ll learn that there are several keys that really increase the
flexibility and power of the system.

Each key on the keyboard either displays a letter, number, character sym­
bol, graphics symbol, function, or a combination of these. We’ll go through
and learn how all of these symbols and characters are used. Relax. We’ll
take it nice and easy. Before you realize it, you’ll be composing your own
custom made programs and taking advantage of the M5’s processing power.

M5 Keyboard

2-3. Displaying Characters on the Screen
What’s a cursor? Look on the screen and you’ll see the character ‘A’

blinking. That’s the cursor. It’s used to indicate the place on the screen
where new characters are input by you.

B a s i c - I

R e a d y
51

7

Chapter 2 Getting Ready

Try pressing a number or one of the letters on the keyboard. You’ll then
see it displayed on the screen. Notice it’s displayed at the cursor’s previous
position. Also, the blinking cursor moves one position to the right and a
“ beep” is heard.

B a s i c - I

R e a d y
aEl

Try pressing a couple more letters and numbers. You’ll see all the keys
you pressed displayed on the screen one after another. You can see that the
cursor stays ahead of your input by one position. It marks where your next
input character will be displayed.

E a s i c - I

R e a d y
a b c d e t E

The M5 system has many powerful functions. If you press a key we have
not yet discussed, it may make it impossible for you to handle the next oper­
ation in this manual. If this warning comes a bit late and you can’t make the
system perform as you like, turn the switch on the power unit OFF and back
ON. This resets the system and allows you to start over. Note that this is not
always good practice since the system forgets what it was previously doing.
But when you become familiar with the system, this won’t be a problem.
In the meantime, we recommend that you closely follow this manual.

8

Chapter 2 Getting Ready

2-4. Scrolling Function
The numbers zero through nine are displayed on the uppermost line of

the keyboard while the letters are arranged in the three lower rows, just like
a typewriter. Press all of these keys. When enough keys have been pressed
to fill up one line, the cursor automatically falls off the end of the current in­
put line and ends up at the leftmost position of the next line. This happens
for every new input line.

Obviously, since there are 24 input lines, the screen quickly runs out of
space. In this case, the cursor never leaves the screen. Instead, the cursor
falls off the end of the current input line as before. But the uppermost line
moves up one line and disappears from the screen. Don’t worry. The com­
puter hasn’t forgotten about it. It’s retained in the M5’s memory. You’ll see
the cursor displayed at the leftmost position of the new input line which is
now the bottom line of the screen. The same thing will occur every time a
new line is input.

This function is called “ scrolling.”
The figure below shows a screen that has been completely filled with input.

The cursor is sitting at the lower right hand corner of the screen.

b b

d d

i 3 3 3 3 3 :

d d d d d d d d d d

f f t f I f f t t H t t t H t
9

h h h hi h h h h h h h h h h h h h

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
b b b b b b b b b b b b b b b
C C C C C C C ~ C ~ r I- r
d d d d d d d d d d d d d d d

g g g g g g g g g g g g g g g g ■
i i f i
9 9 9 9
h h. h h

1 1

: k k k k t-
1 1 1 1 '

i rn rn m rn r
i ri n n n r
:• o o o o
■ P P P P
i t q q q
• r r r r

k k k k k k k k k111111111
rn rn rn rr» m m rn rn m
n n n ri n n n n n

P P P
9 9 9

k k k k
1111
m m m m
n n n n
o o o o
p p p p
q q q q

r r r r r r r r r r r r r r
t t t t
u u u u

> S Sr S
t t t
) «J u u

; S 5 5 5
t t t t
.1 u u u u

•' 'v' M V V V V V ' V
.1 I...I UI IjJ UI w w w w w

:: X X X X X X X X X

IJ IJ IJ IJ IJ IJ I.

f { i i f i i t t t t
9 9 9 9 9 9 9 9 9 9 9
h h h h h h h h h h h
i i i i i i i i i i i
j j j j j j j j j j j
k k k k k k k k k k k1 1 1 1 1 1 1 1 1 M
m m m m m m ni m m m m
n n n n n n n n n n n
o o o o o o o o o o o
p p p p p p p p p p p
q q q q q 9 9 9 9 9 9r r r r r r r r r r r
S S S S 3 3 3 S 3 3 3
t t t t t t t t t t t

IJ U U U IJ u
V V V 'J U 'j ’ '' " (W 'J W 'J w w 'J 11 g

Full screen of input

Now notice after inputting one more key, the topmost line scrolls off the
screen and the cursor moves to the leftmost position of the next input line.
The next input line then becomes the current input line.

Chapter 2 Getting Ready

b b b b b b b b b b b b b t. b b b t. b b t. b b b b b b b b b b b
c i” - - r r r r r r r r

d d

t + t + + t t t t t i t + i + + + i t i i \ i f H H f t t f
q 9 q q q q q q q q q
h h hi h h. hi hi h h, h. h. h. h, h. h. h. h. h, h, h. h hi h hi h h hi h h h hi h
l 1 i i 1 1 1 1 1 i i 1 1 1 i 1 i 1 i i l l l 1 1 1 1 1 1 1 i i
i . i 1 i . 1 1 I I . 1 . 1 1 . i . 1 . i . 1 . I . i . 1 i i i i l J J J J J J O j o

k
1

k
]

k
1

k
]

k
]

k
]

k k
1 i

k
1

k
]

k
i

k k
i

k
1

k
i

k
]

k
i

k
i

k k k k
1 ^

k
1

k k k k k k k
1 1 1 1 1 1 1

k k
1 1

m rn rn rn rn rn rn rn rn rn rr« m m rn m rn m rn m rn m ni ni m m ni m m ni m m m
n n n IT n n n n ri n n ri n n ri IT IT n n IT n n n n n n n n n n n n
”i 0 n n n n ri r» l“. ,-| r, r, o o n o o o o o o o o o o o o
p P P p p P p p P P P F' P P F1 P p P P P P P P p p p p p p p p P
q q q ■q 9 9 9 9

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r
s s s s s •=: s •=: s s s s i ^ ^ ^ * 9 5 5
t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t

i ij1 'J ij U u u u ij u u u u i j u U u u u u u u u u u u u u 1

11. 1 in1 ini iTi i.i i.i
■'

m ■' in
L-'
i_._i

L.'
in

V
i.O

L-'
I...Iw I.I

U'
1.0 1.0 w

u
w

M '0 '0 •> '■-’ '
w to to * 0 'O 'O to 'o ’-1

: x X X y x y X X X X x X X X X X >•

L _ 2 _

Automatic scrolling

2-5. Repeat Function
Next, try pressing the same key again and again. Now keep pressing down

on the same key. Notice the effect is the same, in other words, constant
pressure on a key is the same as repeatedly pressing that key resulting in a
constant stream of the same key displayed on the screen. It’ll stop once you
take pressure off the key.

This function, for obvious reasons, is called the “ repeat function.” The
repeat function, together with the CTRL key at the lefthand side of the key­
board provides you with another function. It’ll be explained later.

2-6. Delete Function
Up to this point, we’ve only discussed how to display letters and numbers

on the screen. Now we’ll describe how to fix incorrect letters and numbers
already displayed on the screen.

For this, we’ll conveniently invoke the “ delete function.” So press the
CTRL key at the lefthand side of the keyboard with your left hand. Keeping
the CTRL key pressed, press the DEL key situated at the upper right side of
the keyboard with your right hand. (If you have trouble finding the DEL key,
note DEL is indicated at the upper left of the key in small capital letters.)
Pressing this combination of keys at the same time results in the cursor step­
ping one position to the left and erasing the character that was previously
displayed there. To delete several characters, press the DEL key for each
character you want to delete.

Now stop pressing the CTRL and DEL keys and type in the correct infor­
mation. Each time you input a new character, the cursor will then move to
the right as before and the new character is displayed on the screen.

10

Chapter 2 Getting Ready

0 0 0 0 0 0 B B B B D D U 0
0 E) © GB B G5 S3 © 0 © ® D D BED
-r b b b b b b b b b d h r i - i
EJ B B [3 G) ffl ® ® D D 0 D ED

Invoking the Delete function with the CTRL and DEL keys”

Deletion from end of text

The delete function can also'be used in the middle of a line of characters.
In this case, the cursor remains where it is and all characters to the right
move one position left. The text is shortened.

Chapter 2 Getting Ready

R e a d '=»
a b c d e El9 h 1 j k 1

Deletion in the middle of the text

R e a d y
a b c d e 0 h 1 J k 1

2-7. Editing Function
What do you do if you find a wrong character many positions back on the

screen? It would be very tedious to backtrack using the CTRL and DEL keys.
To introduce a new function, again press the CTRL key with your left hand.
Now look to the right side of the keyboard. In the upper left corner of four
keys are displayed —, — , t , and | . These are known as cursor control keys.
Try pressing the t key. (Don’t forget to leave the CTRL key pressed.) Looking
at the cursor, notice it’s moved one line up and remains on the same column.
Next, try pressing the — key while maintaining pressure on the CTRL key.
The cursor moves to the left of the same line, but the character that sits
where the cursor was previously displayed is still there. To sum up cursor
control keys, they allow you to easily move the cursor in any direction while
not changing any of the displayed information.

Take your left hand off the CTRL key and press a letter key. You’ll see the
letter displayed in place of the last displayed character. Using this combina­
tion, it’s easy to see how any character displayed on the screen can be
quickly and easily corrected.

This is known as the “ editing function.”

12

Chapter 2 Getting Ready

0 B 0 0 B S S 0 0 E BHZ}|D l — 1
03 B 000@ E)C l)0 G3|0 QD GED

GE3 B 0 ® © ® K? G) D OIZJD CED

Invoking the Editing function
with the CTRL and
—, — ,t, and l keys”

2-8. CTRL Key Functions
If you’re itching to get at more powerful functions, relax. We’ll describe

several very useful functions that also use the CTRL key.
Before going on, move the cursor to the leftmost postion of the current

input line. Pretty boring if the cursor was near the right margin. But there is
an easier way. For this exercise, now move the cursor somewhere near the
middle of the current input line. While keeping the CTRL key pressed, press
the B key. The cursor is automatically moved to the leftmost position of that
input line. Now you can type in new characters for that line if you like. Try it.

Before Using the CTRL B Function

After Using the CTRL B Function

Chapter 2 Getting Ready

The upper left corner of the screen is also known as the “ home” position.
Similar to the CTRL and B key combination which moves the cursor to the
leftmost position of the current input line, the CTRL and K key combination
moves the cursor to the home position. Don’t forget to press both keys at the
same time. Try it.

Before Using the CTRL K Function

f e a d y33a333a33a3333a333a<=ia3a3a3aaaaaa
b b

After Using the CTRL K Function

You may sometimes want to delete many characters at one time. To see
how this can be easily done, move the cursor to a position anywhere on the
input line. We’ll practice how to delete all characters beginning at the cursor
and to the right of it. Keep the CTRL key pressed and press the X key at the
same time. Pretty easy. All these characters are deleted. Likewise, a com­
plete line can be deleted by positioning the cursor to the leftmost position
and using the CTRL and X key combination.

Before Deleting Characters

14

Chapter 2 Getting Ready

After Deleting Characters

Many times you will want to delete only a few characters somewhere in
the middle of a line. This can be easily done by moving the cursor to the
position from where you want to begin deleting. You can delete by one of
two methods. One method is to push the SPACE key as many times as
desired; however, this will leave spaces where the key was pressed. If you
don’t want the spaces, then use the DEL key along with CTRL key as many
times as needed to delete the characters and close the text up.

R e a d y
a b e d ? [3 1 J k 1

Using the SPACE key to delete characters

Chapter 2 Getting Ready

2-9. Drawing Graphics
Up to now, you’ve learned only how to input, correct and delete alphabet

letters, numbers, symbols and signs. But the M5 gives you the capability to
draw graphics. Let’s learn how to do it.

• Graphics Mode
To get into the graphics mode, push the FUNC key and the 3 key together.

You will notice that GRAPH is written in small letters above the number 3. The
cursor now blinks with the letter ‘G’. In this mode, you can draw graphics
using the symbols highlighted in light blue on the keyboard and also other
symbols if the SHIFT key is pressed. Try drawing some pictures. It will pro­
bably be easier if you use the —, — ,t, and i keys as described in the Editing
function section.

Notice that the first row of characters in the shifted position is identical to
that in the alphabet mode.

16

Chapter 2 Getting Ready

• Alphabet Mode
To get into the alphabet mode, press both the FUNC key and the 1 key

together. You will notice that SMALL is written in small letters on the top part
of the number 1 key. The cursor now blinks with the character A as you have
seen earlier. Remember that this is the mode that you are in when you first
power on the M5.

Alphabet characters with SHIFT key not pressed

Alphabet characters with SHIFT key pressed

•Capitals Mode
When you want to type using capital letters only, you could hold down the

SHIFT key but it is more convenient to use Capitals mode. Press the FUNC
key and the 2 key together. The cursor will change to the letter C, and all
letters typed will appear in upper case. Press FUNC and 1 together to return
to lower case mode.

Well, you've learned how to type alphabet letters, characters, graphic sym­
bols, and signs easily on the console. You’ve also learned how to correct and
delete them. These techniques are very important and basic to programming
in BASIC I. Please be sure that you become familiar with all the operations
that have been described so far.

Chapter 3 What Can I Do with BASIC?

3-1. Let’s Do Some Calculations
First of all, turn the power off and on to erase the screen.

•ADDITION
Let’s add 2 + 3. Normally, you would write 2 + 3 = but in BASIC I this is

not the format in which to do a calculation and print a result. BASIC I has
some special rules and commands that you must learn and adhere to. Don’t
worry, they’re quite easy and pretty soon you’ll be able to exploit the full
capability of the M5.

For this addition, you’ll need to use the PRINT command to obtain the re­
sult. Type PRINT 2 + 3. The + symbol is located on the ; key, so, you’ll need
to press both the SHIFT and ; keys at the same time.

R e a d y
P R I N T 2 + 3E1

Why wasn’t the = sign used? Well, in BASIC I, this will not cause the
result to be printed. The cursor is positioned after the 3 and is still blinking.
How do we get the answer to be printed out? Well, you need to press the
RETURN key. Look what happened. The computer printed out the answer
and the Ready message on a new line. This message indicates that the M5
is ready to accept input again.

Try adding some more numbers. Note: You may type PRINT in small letters.

•SUBTRACTION
Use the - sign to perform subtractions. Try doing some subtractions.

For example:

23 - 14
13 - 35

•MULTIPLICATION
In BASIC I, the * symbol (press both the SHIFT and : keys together) is

used instead of the x sign.

18

Chapter 3 What Can I Do with BASIC?

Try some of these examples.

123x34
57x67

•DIVISION
In BASIC I, the / symbol (press the / symbol located on the right side of

the last row) is used instead of the + sign.

Try these examples

100+10
1072+4

3-2. Important Notes about Calculations
•OVERFLOW

In BASIC I, only values in this range - 32767 to 32767 is recognized.
Therefore, if you perform a calculation that yields a result outside this range,
you will get an error message.

For example, try multiplying 400x100

R e a d ■-I

p r i n t 4 0 0 H►= 1 0 0
E r r 1 2 i n 0
R e a d y
5 1

Chapter 3 What Can I Do with BASIC?

The answer that should be printed is 40,000 but you get this message
’Err 6 in 0’ instead. This indicates an overflow error.

•TRUNCATION
Only integer values are recognized. Therefore, if you try to divide two

numbers, say, 8 + 5 , the answer that will be printed is 1 and not
1.6. Essentially, all fractional results are truncated to the lower integer result.

3-3. Error Messages
BASIC I checks the command syntax for errors. If there is one, an error

message is printed. For a detailed description of the error messages ’Err1 ~
Err18’, refer to page 97.

3-4. Continuous Calculations
In normal programming, you will do many continuous calculations. The

order in which calculations are performed is the same as what you've learn­
ed in school. Basically, all operations within parentheses are performed first.
Operations are performed left to right according to the following precedence
levels: multiplication (highest), division, addition, then subtraction (lowest).
Please remember that the final result must be within this range, - 32767
to 32767.

Try the following calculations and as many as you would like to try.

12x5 - 1 8 / 9 = PRINT 12 * 5 - 18 / 9 RETURN
(2 x 4)x (6 —3)= PRINT (2+4) * (6 -3) RETURN
3 + 24= PRINT 3+ 2 * 4 RETURN

t
The a symbol signifies exponentiation.

20

Chapter 3 What Can I Do with BASIC?

How did the calculations come out?
Were you able to use the PRINT command easily?

The PRINT command is one of the simplest BASIC I commands to
know and use, especially, since it gives you your answer on the screen. If
you omit the print command and just enter a calculation, say 2 + 3 and the
RETURN key, then nothing will happen. The PRINT command is necessary.

3-5. Other Usages of the PRINT Command
The PRINT command can also be used to print text. Just enclose your text
within quotation marks. For example, if you had wanted to print 2 + 3, you
enter this P R I N T “ 2 + 3” RETURN. Try it.

R e a d *=»
P r i n t " 2 + 3 "
v + 3

R e a d y
El

Printing text

Try some of your own examples and, if you want, try these here

10 PRINT " B A S I C - I "
20 PRINT
30 PRINT "How do you do?"

You will find this usage of the PRINT command to be very helpful when
programming in BASIC I on the M5.

Chapter 4 Variables

4-1. What Is a Variable?
The concept of a variable will probably be unfamiliar to many users. First,

let’s calculate the following calculation before giving a detailed explanation.
For example, in the three lines below, the sum of 15 and 9 is printed. The

variable A has been assigned the number 15, and likewise, B the number 9.
In this way, A and B, used in place of numbers, are called “variables” . But
more precisely, A and B since they store numbers are appropriately called
numeric variables.

For example

10. A = 15
20. B = 9
30. PRINT A + B

A variable is a symbolic representation (name) that will assume a value.
A variable can also take on different values besides numbers; for example, it
can take on characters and symbols. In this case, they are called character
string variables. They will be described in more detail with a sample program
later in this manual.

The value of a variable will also change for different executions of the pro­
gram or at different stages within the program. Don’t worry, if you are a little
confused, this will be explained in detail later.

4-2. Letter Variables
In the example above, the variables A and B are each one character.

However, you can use symbols and more characters as BASIC-I variables.
A variable can be at most 32 characters.
The first should be non-numeric so that BASIC I does not confuse it with a
number.

For example

10. AAAA1000 = 15
20. BBB44dd2 = 9
30. PRINT AAAA1000 +

BBB44dd2

a a a a 1 0 0 0 = 1 5
b b b 4 4 d d 2 = 9
P r i n t a a a a 1 0 0 0 + b b b 4 4 d d 2

22

Chapter 4 Variables

IMPORTANT NOTES:
Do not name a variable that has a special meaning in BASIC I; for exam­

ple, do not use a variable named PRINT.
Also, do not start a variable with a number, otherwise, you will get an error

and the computer will misinterpret your variable.
Changing one character in a variable indicates a different variable. For

example, LEN and LENG are different variables.
In conclusion, we hope you understand the meaning of variables. The con­

cept is very important and basic in order to program in BASIC I. In the latter
half of this manual, variables are explained in more detail with a sample
program.

Chapter 5 What’s in a Program?

5-1. Steps in Making a Program
A program is made up of many instructions that are each separated by

the input of the Return key.
Now that you’ve learned how to input characters from the keyboard to the
screen, and you understand the concept of a variable, let’s make a program.

5-2. Let’s Make a Program
First, we have to clean up the computer as follows:

• Clearing the Screen (CLS)
It is a good idea to start typing in a program from the top of the screen.

To erase everything on the screen, you need to use the CLS command. Type
in C L S , then press the RETURN key.

• Cleaning Up Internal Memory (NEW)
It is also necessary to erase internal memory, that is, all programs and

data stored in the computer before entering your program. Otherwise, you
may encounter some unknown problems. To clean up internal memory, type
in N E W, press the Return key. This does not clear the screen, but every­
thing displayed on the screen is cleared from internal memory.

NOTE:
Clearing internal memory and the screen can also be done by powering

off and on the M5.

Okay, now let’s make a program. Key in the following program as described
below.

I------
Line Number

------1-----
Command

----- 1
Operand

1 0 SPACE P R I N T SPACE 2 + 3 RETURN
2 0 SPACE E N D RETURN

24

I
Chapter 5 What’s in a Program?

First, let’s explain the meaning of 10 and 20. They are line numbers
required by BASIC I so it will know how to distinguish and reference each
instruction. The line number or identifier as you will discover later is very
important for programming in BASIC I.

The next column is reserved for BASIC I commands. In this case, the
PRINT command tells the M5 to print the sum of 2 plus 3. The END com­
mand just tells the M5 that this is the end of the program. This is always the
last command or instruction of the program.

Next is the column for operands. In this example, only the PRINT command
has an operand— 2 + 3. Operands are the input for the command.

Well, you’ve entered the program but you want to know how to run it and
see the answer.

•Executing a Program (RUN)
To execute a program, you need to use the RUN command. Key in RUN

and press the Return key. You should see your answer now. The RUN com­
mand is always used to execute a program.

R e a d y
1 0 P r i n t . ^ + 3
Z. U e n d
r u n

R e a d y
El

Executing a Program

5-3. Let’s Look at the Program Again
•Listing the Program (LIST)

To list out your program at any time, use the LIST command. Try it! Enter
L I S T and then Return. Remember, commands may be typed in small or
capital letters.

I i s t
10 PRINT 2+3

20 END

Chapter 5 What’s in a Program?

NOTE:
A space will automatically be inserted between the line number and the

command.

•Convenient FUNC Key
You can display automatically many BASIC-1 commands with the simple

touch of the FUNC key and the appropriate key. These commands are writ­
ten in small letters above the alphabet keys on the keyboard. Note that you
can only display these keywords and not any other words.

For example, try displaying the PRINT command. While pressing the
FUNC key with one hand, press the P key with the other hand. Wasn’t that
easy? Try some other commands.

I 2 3 4 5 6 7 8 9 0

BASIC I commands available with FUNC key

5-4. Let’s Make It Look More Like a Program
•Entering Data (number or character string) from the Keyboard

Let’s look at our previous sample program which added two numbers. That
program only did one calculation but, now, we would like to do an unlimited
number of calculations without having to enter the program over and over
again. Let's enter the following example. First, clear your screen and internal
memory with the CLS and NEW commands.

1 0 i n p u t ^ a
- Be sure there is a space here

2 0 i n p u . t u b

3 0 c = a + f c » —
- Be sure there is a space here

4 -0 p r i n t y c

5 0 e n d * Be sure there is a space here

26

Chapter 5 What’s in a Program?

Now we’re ready to execute the program. Enter RUN. You should get the
following response on the keyboard.

run
? a

Notice that the blinking cursor is positioned after the ’?’. This indicates that
the program is expecting input. In line 10 of the program, you typed in ‘input
a ’. Well, the INPUT command specifies that data is expected from you, the
user. A '?’ symbol is a prompt from the computer for you to input some data.
The first example was to add 2 and 3. Enter 2 and Return. This value entered
will now be assigned to the variable a. Now the screen will display another
'?’ to prompt you for the second value for the variable b (line 20— input b).

run
? 2
? a

Enter 3 and RETURN. You should now see the following display on your
screen.

run
? 2
? 3
5 — result printed

a

The answer 5 was printed. Now if you want to add two more numbers, just
type in RUN and repeat the same procedure as described above. Try it.

• Getting a Listing
Let’s get a listing of the above program.

l i s t
10 INPUT A
20 INPUT B
30 LET C = A+B
40 PRINT C
50 END

Chapter 5 What’s in a Program?

Notice that it is slightly different from what you typed in. Specifically, look
at line 30 and you see that the word LET has been inserted before C = A + B.
This is automatically done because each instruction must have a BASIC I
command. And since the LET command is the one used most, the M5 has
made it easier for you to program so that you don’t have to enter it all the
time. All you had to do was to type the equation, in this case, c = a + b.

• Errors
If you were not able to get the answer, then you probably typed the pro­

gram incorrectly. For example, your program may look like this.

l i s t
10 LET INPUTA

20 LET INPUTS
30 LET C=A+B
40 PRINT C
50 END

The LET command was probably automatically inserted when no space
was inserted between ‘input’ and ‘a’. The computer misunderstood your
command line as ‘inputa’ instead of ‘input a’, and thus, it inserted ‘LET’.

10 i n p u t a

t _ Did not leave a space

Be sure that you leave a space between the command word and the
operands. If you still get an error message after you run the program, refer
to section 5-6 on Corrections.

28

Chapter 5 What’s in a Program?

5-5. Line Numbers
• Importance of Entering Line Numbers

If you don’t enter line numbers, then the instructions will not be entered
into the program. Instead the instruction will be executed when the RETURN
key is pressed. Always enter line numbers when creating a program.

• Why in Increments of 10?
Well, you could number the lines as 1,2,3,... but what would happen if you

decided that you wanted to add one or more lines between, say, 5 and 6.
And your program was 50 lines long. You wouldn’t want to renumber over
40 lines, would you? By numbering the lines in increments of 10, you can
modify and update your programs easily and quickly.

• Automatic Line Numbering (AUTO)
BASIC I in the M5 provides a very useful command in which lines are

automatically numbered when you enter a program. Everytime you enter an
instruction, the line number would have already been printed on the screen.
To invoke this function, use the AUTO command. This command requires two
input values: the first specifies the line number to start at; and the second
specifies the increment for subsequent line numbers.

This first example specifies automatic line numbering beginning with, line
number 100 in increments of 10.

AUTO 1 0 0 , 10

The second example starts automatic line numbering with line number
100 in increments of 50.

AUTO 1 0 0 , 5 0

Note that line numbering can only be within this range, 1-32767.

To cancel the Auto function, press the RETURN key only after the a line
number is displayed.

Chapter 5 What’s in a Program?

5-6. Corrections
To correct the program below, compare it with the one in section 5-4.

10 LET INPUTA
20 LET INPUTS
30 LET C = A+B
40 LET PRINTC
50 END
S

• Using the SPACE Key
First, position the cursor on line 10 at the beginning of the word LET.

Press the Space key three times to erase this word.

R e
1 i
1 0

a d y
s t-

a i N P U T f l
2 u LET I N PUTE:
y. y LET C = fl + B
4 0
5 M

LET
E N D

P E I N T C

Now position the cursor over to the letter A and press the SPACE key
again.

R e a d y
1 i s t
1 0 I N P IJ T H
2 0 LET I N P U T B
7. H LET C = ft + B
4 0 LET P R I N T C
■=; m E N D

Type in A and press the Return key.

30

Chapter 5 What’s in a Program?

• Using CTRL X and LIST for Editing
You can list the program while you are correcting it without having to

move the cursor to the end of the last line number.
For example, position the cursor at the beginning of line 20. Press the

CTRL key and the X key together to erase this line. Then, type in LIST. What
happened? The line number 20 reappeared again. The deletion using the
CTRL and X keys only erased the instruction but not the line number.

• Using the DEL Key
You can use the DEL key to correct the errors. Verify your corrections

with the LIST command.

• Reentering One Line
You can correct a line by simply reentering it without having to move the

cursor to that line. For example to correct line 40, simply input the following
on a new line.

40 PRINTyC
t— — Leave space

Now, enter the LIST command to verify the change.

10 INPUT A
20 INPUT B
30 LET C=A+B
40 PRINT C
50 END

• Erasing One Line
You can erase one line by simply typing in the line number immediately

followed by pressing the Return key without having to move the cursor to
that line. For example, to delete line 50, simply input the following.

50 RETURN Press RETURN key

No space and Return key pressed

Chapter 5 What’s in a Program?

• Deleting Several Lines
Of course, you can delete your program by using the NEW command but

if you want only to delete certain lines without having to delete one line at a
time, you can do the deletion easily and quickly with the DEL command. You
also need to specify the first and last line numbers of the deletion. For exam­
ple, lines 20— 40 will be deleted as keyed below.

D E L 2 0 . 4 0 R E T U R N

Now, let's see what remains of your program. Type in LIST.

I i st
10 INPUT A
Ready

As you can see, lines 20— 40 were deleted as well as line 50 from the
previous method of deletion described before.

5-7. Using the INPUT Command in Another Way
The INPUT command can also be used in another way.

Enter the program on the right as shown below.

Previous program

10 INPUT A
20 INPUT B
30 LET C=A+B
40 PRINT C
50 END

new
10 input a?b
20 c = a + b
30 print c
40 end

Lines 10 and 20 of the program on the left have been merged into one
line on the right. Essentially, the INPUT command is now just on one line
instead of two lines. Let’s execute the program.

run
•7

32

Chapter 5 What’s in a Program?

At this point, you can now enter both numbers separated by a comma on
the same line. For example, enter 7 ,5 Return.

The answer 12 is printed.

If you have many input values, you can also have your program accept
more input on one line. Look at the example below.

1 isi
10 i nput a > b.« c
20 d = a+b ■f-r
30 P pint d
40 end

Let’s execute the program.

run
?

This time you will need to input three numbers separated by commas.
For example, add 3, 4 and 5.

run
? 3 , 4 , 5
1 '4 -» ---------- Answer

See how easy it is!

Chapter 5 What’s in a Program?

• INPUT Command Error Messages
For example, in the last program that required three inputs, if you had

entered ‘CD’, this is what you’ll see.

run
? cd
- ? ?

The ’-? ? ’ indicates that there is an error in your input. Specifically, letter
characters have been input for a numeric variable. You must now enter
numeric values. Let’s enter 3 and 4, and see what happens.

ru n
? cd
- ? ? 3 , 4

??

The ’??’ indicates that there is still more input to be entered. Remember
our program called for three inputs to be entered. Let’s enter the last input 5.

run
? cd
- ? ? 3 , 4

?? 5
12

Ready
El

In summary, the error messages can be described as follows.

-? ? Wrong input Characters were entered when numbers
were expected as input.

?? Insufficient input Not enough input was entered. Enter only
what is expected.
The RETURN key was pressed without any
input entered

34

Chapter 5 What’s in a Program?

5-8. Using Messages to Make Your Program More
Understandable

As you noticed, how you know what to input or what the program
does beforehand can be very confusing. Therefore, messages can be very
helpful in executing a program.

• How to Print Out a Message
First of all, let’s clear the screen with the CLS command. In the last pro­

gram where three numbers are expected, line 10 can be changed as follows.

Enter the change and run the program.

Notice that the INPUT statement printed the text within the quotation
marks. Now, you can enter three numbers. Easy to understand, isn’t it?

Chapter 5 What’s in a Program?

• Better Messages
You can even print out clearer messages. Look at the program

below.

10 PRINT "Addition of three numbers a+b+c"
12 INPUT "a ="? a
14 INPUT "b = "!b
1 £ T KiDI I T H s « ■ r>

Notice that the program is now asking for the input of a. You will now get
prompts for the other two inputs.

run
Addition of three numbers a+b+c

Aren’t these messages easier to understand? They’re very helpful!

space here semicolon here

Enter this program and execute it.

run
Addition of three numbers a+b+c
a =?

a = ? 3
b = ? 4
c= ? 5
12

36

Chapter 5 What’s in a Program?

5-9. Other Usages of the LIST Command
Up to now, you’ve learned how to list your entire program with the LIST

command. However, the LIST command is very versatile!

For example, if you had an error on line 30, this is how you can use this
command.

run
Err 2 in 30

You only want to see line number 30 but not the whole program. Just
enter the following.

The LIST command can be used in many different ways!

Chapter 6 How to Save a Program

6-1. Saving Your Program
You’re probably wondering, "If I typed in a really long program, how can I

save it without having to retype it in each time?” As you know, each time you
turn off the computer, all of internal memory is lost. Therefore, you’d like
a way to save your program and use it again at any time. Well, that can be
easily done in BASIC I.

First of all, you will need a cassette tape recorder and a blank cassette
tape. Connect the tape recorder as described in the Hardware manual.

Let’s save the program that has been used as the example so far.
Okay, let’s learn how to save a program. Don’t worry, it’s easy!

10 PRINT "Additional of three numbers a+b+c"
12 INPUT " a = " ? A
14 INPUT " b ="; B
16 INPUT " c = " ; C
20 LET D=A+B+C
30 PR INI- D
40 END

• Attaching a Filename to Your Program
When you want to save a program, you need to assign a name to your

program. This name or filename labels or identifies your program to the com­
puter. If no filename is attached to your program, then it cannot be saved.

In the sample program above, let’s attach the filename “ add3” . The SAVE
command is used to save a program. Before you enter this command, you
have to prepare your tape recorder for recording.

If you have hooked up your tape recorder for remote control,' then make
sure you have forwarded the tape past the leader portion before inserting it
into the tape recorder. Press the appropriate buttons for recording. Notice
that the tape does not move. That’s because the computer is controlling it.
Now let’s enter the SAVE command.

save" add-3"

Hit the Return key and now the tape should move. When the program has
been saved, the ready message will be displayed and the tape recorder will
automatically stop.

save"add3"
Ready

38

Chapter 6 How to Save a Program

If your tape recorder is not hooked for remote control, then insert the tape
and forward it past the leader portion. Now enter the command as shown
above (without pressing Return). Next, press the appropriate buttons to begin
recording and press the Return key to begin saving the program. The ready
message will be displayed when the program has been saved (see the figure
above). Notice that your tape recorder is still going. You have to manually
stop it, otherwise, it’ll keep on recording.

It wasn’t that hard to record, was it?

• More About Filenames
Before we continue, let’s explain a little more about filenames.
First, filenames are at most 9 characters long. If you try to use 10 or more

characters, then your program will not be saved.
Second, try to use filenames that are meaningful and useful so that you

will not forget them easily, especially if some of them will not be used often.
For example, in the program above, if “ nothing” was chosen, you’ll probably
be wondering what the program is all about. So, be sure to pick catchy,
descriptive filenames.

Third, be sure you write down the filename somewhere— in a notebook or
on the cassette label or box. Otherwise you’ll forget.

Just pretend that you are recording beautiful programs that can be played
over and over again to give you lasting pleasure.

6-2. Verifying Your Program
You saved your program, but aren’t you a little worried that it might not

have been saved correctly? Relax, the M5 provides a way for you to verify
that. •

• Using the VERIFY Command
The VERIFY command will check to make sure that your program has

been saved properly.
Before you enter the command, you need to rewind the tape (if your tape

recorder is not remote-controlled).
Enter the command (rewind the tape now to the beginning of the tape

if your tape recorder is connected for remote control) and press the playback
button and the Return key.

v e r i f y " a d d 3 "

Chapter 6 How to Save a Program

The tape should now move. Pretty soon your filename followed by an
asterisk will be displayed on the screen. This indicates that your program
is being verified.

R e a d y
v e r i f y " a d d 3
a d d 3 *

When your program has been verified, a ready message will be displayed.
This means that everything went okay.

R e a d y
e r i i y " a d d 3

a d d 3 *

R e a d y
a

At this point, the tape recorder stops if it is under remote control, other­
wise, you’ll have to press the stop button. There, wasn’t that easy?

NOTE:
If the tape recorder does not work, make sure you have connected it

properly. Are all connections secure? Do you need fresh batteries?
If your tape recorder is working okay, but you still were not able to verify

your program even though you supposedly saved it, rewind the tape and try
saving the program again.

40

Chapter 6 How to Save a Program

• Another Way to Use the VERIFY Command
You can also use this command to find out all the filenames on a tape. If

you forgot or are not exactly sure of the name, then this command will come
in especially handy. Use a filename that you are pretty sure that is not on
tape if you want to list all the filenames, otherwise, the command will stop
when the filename is found.

For example enter the command as shown below.

V S T i f y " d u m m y " •« • 1 "The filename should be uncommon"

After you enter this command, the filenames on the tape will be display­
ed on the screen. If no match was found, then the tape will go to the end.
However, the verify command is still in effect. Therefore, if you want to cancel
it, then you need to press simultaneously the SHIFT and RESET keys.

veri fy"dummy"
.add3

6-3. Loading Your Program
Now that you saved and verified your program, you want to do one final

check. You clear memory with the NEW command and now you want to load
your program into the computer. The other times you will be loading in your
program will be when you first start, when you want to load in a different
program, and when you accidentally erased a program by mistake.

Let’s see how easy it is to load your program! •

• Using the OLD Command
The OLD command loads a program into the M5.
First of all, rewind the tape to the appropriate place.
Again, let’s use the “ add3” program. Clear memory with the NEW com­

mand. Enter the OLD command as shown below.

oId"add3"

Chapter 6 How to Save a Program

The tape plays and after a while, your filename followed by an asterisk will
be displayed on the screen. This means that your program is being loaded.

R e a d y
o 1 d " a d d 3 "
a d d 3 *

If there are other programs located on the tape before “ add3” and you
had rewound the tape to the beginning, then their filenames will be displayed
to the screen; however, they are not loaded. Only “ add3” will be loaded.

R e a d y
o 1 d " a d d 3 "
c h e c k b o o k
s t a r t r e k
a d d 3 *

• Using OLD Without a Filename
If you do not enter a filename with the OLD command, then the first pro­

gram that is read will be loaded. In the example above, “ checkbook” will be
loaded. The program loaded also depends on where the tape is positioned
prior to executing this command.

R e a d y
o 1 d
c h e c k b o o k *

43

Chapter 7 Various Commands

7-1. Various Commands
So far, you’ve learned some very simple commands. However, if you want

to write more difficult programs, then you need to know some more powerful
commands. In this chapter, we will introduce these commands. Let’s go!

7-2. Endless Loop
Again, let’s use the sample program from before to explain the meaning

of an endless loop.

10 PRINT
ers a ♦ b ♦ c 12 INPUT
14 INPUT
16 INPUT

Addition of thr(

INPUT M a =" 5 A
INPUT "b = " ; B
INPUT -c=";C
LET D=«+B+C
PRINT D
END

First of all, let’s add the CLS command in line 5. This will clear the screen
before the program is executed. This is a nice way to indicate the start of a
program.

Next, let’s add this command as shown below.

R e a d y

1 0 S P R I N T " A d d i t i o n o f
e r s a + b + c "
1 2 I N P U T " a = " ? A
1 4 I N P U T " b = “ J B
1 6 I N P U T " c = " ; C
2 0 L E T D = A + B + C
3 0 P R I N T D
4 0 E N D

t h r t i n u m b

R e a d y
3 5 9 o t o 1 0

44

Chapter 7 Various Commands

Now, let’s run the program.
Enter the three numbers as before. The answer will be printed.
But notice what happens next! You get the prompt to input a again. Then

for b and c. Another answer is printed and the program starts all over from
the beginning again. This type of continuous looping is called an endless loop.

R e a d y
RUN
Add i t l o n O 4 t h r e e n u m b e r s • ♦ b ♦ c
a = ? 1

1
6

f i d d i t ir A §
c - 7 4

52*‘U

o n O 4 t h r e e n u m b e r s • ♦ b ♦ c

o n
)

O 4 t h r e e n u m b e r s • ♦ b *c

1
i o n O i t h r e e n u mb e r s

Let’s go back and look at the GOTO command found on line 35. Before
you forget, if you want to stop this program, press simultaneouly the SHIFT
and RESET keys.

After the answer is printed (line 30), the next command which is on line 35
is executed. In this case, the GOTO command is executed. This command
instructs the computer to go to line 10 in which the heading is printed. You
could’ve easily specified line 5 in which case, the screen will be cleared each
time before you enter the numbers, or specified line 12 in which case, the
heading would be printed only once.

Imagine what you can do with the GOTO command. You can tell your
program to go anywhere. Just be sure that you specify a line number that
is in your program, otherwise, you’ll get an error message.

I bet you’re itching to learn some more commands? Okay, let’s continue!

Chapter 7 Various Commands

7-3. Looping Three Times
Suppose you only wanted to loop three times. What do you do? Well, you

could’ve easily pressed together the SHIFT and RESET keys after the third
time to stop the program but you must be thinking, “There’s got to be another
way!” Right you are, there is!

Let’s look at the program below which has been modified to do three
repetitions.

2 REM CALCULATION
5 CLS
7 FOR 2=1 TO 3 STEP 1
10 PRINT "Addition of three numbers a+b+c"
12 INPUT "a = " ■ A
14 INPUT "b ="5 B
16 INPUT "c="5C
20 LET D=A+B+C
30 PRINT D
35 NEXT Z
40 END

Notice that lines 7 and 35 are different

♦-----------
a space is needed here

7 F O R Z = 1 T O 3 S T E P 1

3 5 N E X T V Z
t___ -------a space is needed here

Why don’t you execute the program and see what happens.

Your screen probably looked a little like the above.

46

Chapter 7 Various Commands

Well, this new command (look at line 7) told the computer to execute
the next set of commands three times. The set of commands is bounded
by line 35.

The FOR— TO— NEXT command is very powerful in that it lets you specify
exactly how many times you want to do a certain set of commands.

Let’s analyze the command in more detail. The FOR Z = 1 says to start the
loop counter Z at 1. The TO 3 says to stop after Z>3 and the STEP 1 says
to add 1 to Z each time the NEXT Z command is executed.

So in this example, Z = 1 when the program starts execution. After the
answer is printed, Z = 2. The program starts and the answer is printed again
after you input the three numbers. Now Z = 3 and the program repeats itself.
Then Z = 4, at this point, the computer knows to stop looping because Z is
greater than 3 and this is what happens.

7 FOR Z=1 TO 3 STEP 1
i________ i i_____i i_______ i

Z = 1, Until Z > 3 , Add 1 to Z

In conclusion, this command allows you to execute a certain set of
instructions a specified number of times.

This command is very powerful so several more usages will be explained
in the next section.

Are you ready? If not, why don’t you take a break. It’s good to let new and
exciting ideas sink in a little. If you go too fast, you’ll become confused and
discouraged. And we don’t want that! Go back and review a little. And when
you’re ready, move on!

Chapter 8 Dice Game

8-1. Game Program
Up to now, we've been familiarizing you with how to use BASIC I. From

here on in, that won’t be the case anymore. We will now describe the com­
mands involved with games.

Our first game, the “ dice game” has already been programmed. This is a
very simple game program which will provide you with many basic and nec­
essary commands and concepts for programming more difficult programs.

You will be introduced to many new words and complicated explanations.
Don’t worry, if you don’t understand exactly, just input the program and

play and learn along.
Let’s go!

8-2. RND Function
For the dice game, it’s difficult to display the die on the screen right now,

so let’s just print the number of the die on the screen.
What’s the RND function?
This function outputs random numbers. So, for example, when you throw

a die, you can get a number between 1 and 6. In this case, the function
simulates the throwing of a die. This function can generate any number and
is appropriately called a random number generator.

In BASIC I, there are 23 other functions which are described on pages 89
to 92.

Now let’s use the RND function to determine the pips on a die. Enter the
following program. Be sure to clear memory first.

10 CL.S
20 LET DIE=RND(5)+1
30 PRINT DIE
40 GOTO 20

------------------------- i___

Run the program.

Chapter 8 Dice Game

You’ll notice that the numbers on the screen are all between 1 and 6.
Press both the SHIFT and RESET keys to stop the program.

Let’s explain line 20. The RND function with the number 5 specified within
parentheses will generate a number between 0 and 5. But the number on a
die is between 1 and 6; therefore, 1 is added to the number generated by
RND to get a die number.

Consequently, you can generate other numbers in larger ranges. For
example, if you input 100 or 1000 within the parentheses, then you will get
numbers between 1 and 101 or 1 and 1001.

This RND function will be especially useful later on.

8-3. “Computer” and Dice Game
Well, now you know how to generate the number on a roll of the die.
Let’s play the dice game with the computer. The winner will be whoever

throws the higher die.
Input the program as follows.

10 CLS
100 REM Computer r o l l s your d i e
110 RANDOMIZE
120 MYDIE = RND(5)+1
130 PRINT "Your d ie is a "5MYDIE
200 REM Computer r o l l s i t s d ie
210 RANDOMIZE
220 CD IE = RND (5) +1
230 PRINT "Computer r o l l s a "5CDIE

Run the program. You’ll see what your die and the computer’s die are.
You know who won but let’s have the computer tell you. A decision is

needed so let’s enter the following statements.

300 REM Who won?
310 LET STR$ ="The
320 IF MYDIE=CDIE
330 IF MYDIE>CDIE
340 PRINT STR*

computer won"
THEN LET STR*="Draw"
THEN LET STR*="You won!"

Chapter 8 Dice Game

Notice that the judgment was based upon the IF-THEN command which
you saw before. Let’s look at lines 310 to 330.

Line 310 Store the character string “ THE COMPUTER WON.”
into the string variable STR$.

Line 320 Store “ DRAW” if MYDIE and CDIE are the same.
Here, the string variable STR$ changed from
“ THE COMPUTER WON.” TO “ DRAW” .
If the numbers are the same, then STR$ remains
at “ THE COMPUTER WON.” .

Line 330 Store "YOU WON!” if MYDIE is greater than CDIE.

Hopefully, you understood what has been explained so far. If you are not
completely sure, just run the program and let the computer computer display
the results and winner.

R e a d y
r u n
V o u r d i e i s a 5
C o m p u t e r r o l l s a 3
V o u w o n !

R e a d y •

• Character String Variables
Characters can also be stored in variables.
In the above program at line 310, the string variable STR$ contains

“ THE COMPUTER WON.”
The variable name must end with a $ sign and can be at most 16

characters.
The character string stored (at most 18 characters) must be enclosed

within double quotation marks.
Character string variables behave just like numeric variables, in .that their

values can be changed at any time. Notice what STR$ can be in the above
program.

50

Chapter 8 Dice Game

8-4. Saving Frequently Used Code as Subroutines
The program above used two dice, one for you and one for the computer.
This time, let’s try to use only one die between you and the computer

because there is no need for two dice.

• Subroutines
A subroutine is essentially a group of common instructions used repeat­

edly in a program. For the dice game, let’s make a subroutine out of the
instructions used to generate the throw of a die. Change your program as
follows.

110 GOSUB 400
120 LET MYDIE = DIE

210 GOSUB 400
220 LET CD1E = DIE

350 END
400 REM Randomly generated d ice subroutine
410 RANDOMIZE
420 LET,DIE=RND<5)+1
430 RETURN

Notice that there are two new commands, the GOSUB command and the
RETURN command. They are always used together. The GOSUB command
above tells the computer to go to the subroutine, in this
case, located on line 400. The RETURN command tells the computer to
return to the next line after the GOSUB command line.

Chapter 8 Dice Game

Let’s list the program

10 CL 8
100 REM computer r o l l s your d i e
110 GGSUB 400
120 PRINT "Your die is a "?DIE
130 LET MYDIE-DIE
200 REM computer r o l l s i t s die
21 0 GOSUB 400
220 PRINT "C om p uter r o U s a " 5 DIE
230 LET CDIE = DIE
300 REM who won?
310 LET STR$ =" Compu ter won. "
320 IF MYDIE = CDIE THEN LET STR$="Draw. "
330 IF MYDIE>CDIE THEN LET STR$="You won!"
340 PRINT STR*
350 END
400 REM randomly generated d ie subroutine
410 RANDOMIZE
420 LET DIE = RND <5) +1
430 RETURN

52

Chapter 8 Dice Game

Let’s explain the program in detail

1. First, the screen is cleared (line 10).

2. Line 110 is executed in which control of the program jumps to line 400.

3. The die is thrown once in this subroutine and the value is stored in the
variable DIE. The RETURN command passes control back to line 120.

4. Your die is printed and the value is stored in MYDIE.

5. Next, the computer’s die is determined in the subroutine, printed and
then saved in CDIE.

6. From here on in, we continue as described before; the winner is deter­
mined and printed.

The values of the dice are saved in CDIE and MYDIE after each subroutine
call because they are needed later to determine the winner. If CDIE and
MYDIE are not used, then the computer has no way of remembering what
you rolled because on the second subroutine call, the old value of DIE (i.e.
your roll) will have been updated by the computer’s value. Consequently, no
winner can be determined.

The subroutine has many usages.
You can have several subroutines in one program. You can even call

another subroutine within one subroutine.
For the present, the dice program is completed, so let's save it on a cas­

sette tape with the SAVE command.

Chapter 8 Dice Game

8-5. How Many Times Did Each Number
Come Up?

Let’s determine how many times each number on a die comes up after a
certain number of rolls. First, clear memory (NEW command) and enter the
program below.

5 REM Dice S t a t i s t i c s
10 CLS
20 FOR 1=1 TO 50
30 LET DIE=RND(5)+1
40 IF DIE=1 THEM LET Di =D1 +1
50 IF DIE = 2 THEN LET 02=02+1
60 IF DIE = 3 THEN LET 03=03+1
70 IF DIE = 4 THEN LET 04=04+1
80 IF DIE = 5 THEN LET 05=05+1
90 IF DIE = 6 THEN LET 06=06+1
100 NEXT I
110 PRINT "ONE -"" D1
120 PRINT "TWO — " ' D2
130 PRINT "THREE -" ;D3
140 PRINT "FOUR SD4
150 PRINT "FIWE ~"?D5
160 PRINT "SIX ~"SD6
170 END

Run the program.

0 N E -8
T U 0 - 1 0
THREE -9
FOUR -7
F I UE -8
S I X - 8
Ready
CD

Notice lines 40 through 90. Don’t they look similar? You are probably
wondering if there might be a simpler way. Right, you are. In the next
section, we’ll introduce the concept of arrays in which you can make those
statements into one statement.

54

Chapter 8 Dice Game

8-6. Array Variables
Let’s simplify the dice statistics program of the previous section. Enter the

following program into the computer. Clear memory first.

2 REM Dice S t a t i s t i c s Program
5 CLS
10 DIM HEADER*(6) , TIMES<6)
12 REM header array has headers
14- REM times array has times r o l led
20 FOR 1=1 TO 50
30 LET DIE=RND(5)+1
40 LET TIMES(DIE)=TIMES(DIE)+1
50 NEXT I
60 FOR 1=1 TO 6
70 READ HEADER*(I)
80 PRINT HEADER*(I)5 H-"5 TIMES(I)
90 NEXT I
100 DATA "ONE ","TWO " , "THREE",

"FOUR " , "FIUE ","SIX "
110 END

Run the program and see what happens. Similar output to the above, isn't it?

ONE -9
TWO -1 0
THREE -9
FOUR -7
F I UE -6
S I X - 9

al* a d y

Chapter 8 Dice Game

• Handling Lots of Data with Arrays
Arrays, as you may have noticed, handle lots of data. Imagine your report

card grades as stored in an array. For example, you might have algebra,
reading, writing, and spelling as your subjects. Then you could record your
grades for each term (pretend, you receive grades three times a year). Well,
you can have one array for each of your subjects. And since you know you will
receive three grades, you can specify the size of the array to be three.

For example, your report card may look like this.

1st term 2nd term 3rd term
Algebra 80 85 90
Reading 75 80 80
Writing 85 80 75
Spelling 90 95 95

Well, that can be stored in the computer as follows.

1 2 3
Algebra 80 85 90
Reading 75 80 80
Writing 85 80 75
Spelling 90 95 95

Pretty easy to understand, isn’t it?

To declare arrays, you need to use the DIM (dimension) command. You
can use character or numeric arrays. Let’s look at line 10.

10 DIM HEADERS(6) , TIMES(6)

A character array has been declared of size 7 (yes, 7 because indices
start from 0. So, 0 to 6 yields 7 elements). A little confusing, don’t worry.
You’ll understand it soon enough. The character array is named HEADERS,
This is a character array because of the $ sign at the end of the variable
name. The TIMES array can also contain seven values, numbers, in this
case.

56

Chapter 8 Dice Game

• How to Use Array Variables
Let’s look at line 40.

40 LET TIMES(DIE)=TIMES(DIE)+1

Each time DIE is calculated from the RND function, DIE is used as an
index into the TIMES array. The TIMES array basically stores the number of
times a die is rolled. TIMES(1) contains how many times 1 was rolled, etc. As
we pass through the FOR-TO-NEXT loop each time, the appropriate variable
TIMES(DIE) is incremented. This variable means the same as D1,D2,...D6 of
the program in section 8-5.

Remember it was mentioned earlier that each array contains 7 values. Well,
whenever you declare the size of an array, the number of variables is always
one more than the size. In this case, the array variables HEADER$(0) and
TIMES(0) are not used because a die does not have the number 0 on it.
Unless, you’re playing with some strange dice?

Logically, array variables let you group data together according to some
common factor. For example, you can have arrays that store names, ages,
addresses, salary, and in the instance of the die game, you can keep track
of how many times- a certain die face came up compared with the other
values.

8-7. Reading Data in Your Program
Sometimes, you may want to read data in automatically without having to

input it in manually. The READ command lets you perform that function along
with the DATA command. Like the GOSUB and RETURN commands, these
two must come together.

Your data may be character strings or numbers. By using the READ and
DATA commands, you can conveniently input data. Also, you can easily
change your data.

The READ command will read values from the DATA command line into
the variables listed on the READ command line. The variables and values
must correspond and be positioned correctly, otherwise, you will get an
error.

You can input several different types of variables on the same command
line. For example,

Chapter 8 Dice Game

10 READ A,B,C$,D,E$
20 DATA 55,32,“ ABC” ,63,“ CDS”

Character string values must be enclosed within double quotation marks
(“), and values must be separated by commas.

Let’s look at lines 60 to 100 from the program earlier in this section.

60 FOR 1=1 TO 6
70 READ HEADER*(I)
80 F'R I NT HEADER* CI) ! " - " 5 TIMES < I >
90 NEXT I
100 DATA "ONE ","TOO " , "THREE", "FOUR ",

"FIVE ","SIX "

Each time the READ command is executed, the computer stores a value
into the HEADERS array. For example, after reading is completed, the array
will look like this.

HEADER$(1) HEADER$(2) HEADER$(3)

HEADER$(5) HEADER$(6) “ ONE ”

“TWO ” “THREE ” “ FOUR ” “ FIVE ”

HEADER$(4)

“ SIX ”

58

59

Chapter 9 What’s a Character String?

9-1. What’s a Character String?
All right. We’re going to get down to brass tacks and find out how to use

character strings. But first, get a glass of milk, or some coffee, and put your­
self in a good state of mind. This chapter may take some time to get through.
Be patient. There’s some good information here. And it’s not very difficult.

Put simply, a character string is a combination of characters or numbers.
In this light, it is a very simple idea. But if you take this a little further and try
to imagine applications for using character strings, you can see this is a very
powerful tool. We’ll go through some applications and examples.

9-2. Playing with Character Strings
We’re going to explore the usage of character strings with an example

program. First input the program listed below. Don’t worry about what the
different statements do; we’ll later go through and describe statements you
haven’t learned yet.

10 REM "LEARNING CHARACTER STRINGS"
20 CLS
30 INPUT "Input a s t r i ng "5 STR*
40 LET LNG=LEN<STR$)
50 FOR H=1 TO LNG
60 LET TEM*=LEFT*(STR*?H>
70 PRINT CURSOR<1 0 , 1 0 >;TEM*
80 FOR C=1 TO 1000:NEXT C
90 NEXT H
100 GOTO 20

60

Chapter 9 What’s a Character String?

Before describing what the various statements do, the following lists the
variables used and what they mean. Notice the variable names describe their
functions with an abbreviation; this makes programs much easier to under­
stand and correct later.

STR$..........A variable name followed by a ’$’ indicates a variable that
stores character strings. STR, in this case, is an abbreviation
for STRing. It will contain the character string that you input
to the program.

TEM$........ Like STR$, TEM$ is also a character string variable, but
with a different function. What we’re going to do later is
play with the character string in STR$ and store TEMporary
versions of it in TEM$.

LNG...........LNG is a variable containing the LeNGth of the character
string that you input.

HH is a variable used as a counter. Besides being a counter,
it is also used to specify the length of a part of character
string STR$.

C C is a variable that is also used as a counter. But its usage
is different. We’ll talk more about it later.

Run the program. Do you see the following information displayed on your
screen? If not, use the LIST-command to look over your program. Be sure
everything is the same. The M5 computer can only do what you tell it to do;
so you need to tell it exactly what to do.

Ready
ru n
T r y i n p u t t i n g a c h a r a c t e r s t r i n g
? ta

Chapter 9 What’s a Character String?

Now input a character string. Try inputting the character string ‘CREATIVE’.
Do you see the following information on your screen?

c r e a t i ^ e

Now input your name. Pretty easy, right?

9-3. Counting Characters
Look at line 40.

40 LET LNG*LEN(STR*)

You’re familiar with assignment statements such as A = 15; line 40 is
essentially the same. It’s slightly different in that it uses a function to assign
a value to the variable on the left of the equal sign. In other words, instead
of using the value 15 (as in A = 15), line 40 uses a function built into BASIC I
called LEN to assign a value to LNG. When LEN is specified as in line 40,
BASIC I automatically takes the character string indicated by the variable
inside the parentheses and counts the LENgth of the character string.

In our sample program, line 30 asks you to input a character string which
is then stored in STR$. Line 40 takes the character string stored in STR$,
determines its length in characters and assigns this value to LNG. Let’s
summarize. At this point, we know that the character string that you input is
stored in STR$ and its length is stored in LNG.

62

Chapter 9 What’s a Character String?

9-4. Looking At Only a Portion of a Character
String
Look at line 60.

60 LET TEN*=LEFT*<STR$,H)

So now let’s see some of what we can do directly with character strings.
It may not seem like much to begin with, but let’s take a couple of characters
from the left side of a character string, and leave the rest. LEFTS, another
function provided by BASIC I, does this easily and automatically.

In line 60 of our sample program, notice LEFTS has two variables listed
inside the parentheses. These are called arguments. The first argument,
named STRS, is the character string from which we will grab some charac­
ters. H, the second argument, tells the LEFTS function how many characters
to grab off the left side of character string STRS.

For example, if STRS contains the character string ‘ABCD’ and H is
assigned the value 3, the result of LEFT$(STR$,H) would be character string
‘ABC’, or the leftmost three characters of STRS.

But, in our sample program, where do we assign H? Look in line 50.

50 FOR H=1 TO LNG

You’ve already been introduced to the FOR-TO-NEXT statement. Each
time line 50 is executed, H is increased by 1. So when line 60 is first ex­
ecuted, H equals 1. This means we’ll take the leftmost character from STRS
using the LEFTS function in line 60. The next time line 60 is executed, H
equals 2. So we’ll take the two leftmost characters from STRS. The next time,
H equals 3, so the three leftmost characters of STRS are grabbed and stored
in TEMS... This goes on until every character in STRS has been examined.

You input the character string ‘CREATIVE’ earlier, a character string of
eight characters. Let’s see what actually happens to ‘CREATIVE’ in the soft­
ware. In this case, H in line 50 varies from 1 to 8 since there are eight char­
acters in ‘CREATIVE’. Line 60 would then be executed 8 times with TEMS
taking on a different value each time. Let’s look at what TEMS will look like
each time.

1st tim eTEM$ = C
2nd tim eTEM$ = CR
3rd tim eTEM$ = CRE
4th tim eTEM$ = CREA
5th tim eTEM$=CREAT
6th tim eTEMS = CREATI
7th tim eTEMS = CREATIV
8th tim eTEMS = CREATIVE

Chapter 9 What’s a Character String?

That’s right. Every time H increases by one, the LEFTS function grabs one
more character from STR$. TEM$ gets longer until it’s grabbed the entire
string stored in STR$.

It’s a little bit hard to tell by looking at the screen that TEM$ changes each
time line 60 is executed. What you’ll see on the screen are all the characters
you input displayed one by one from the left. It’ll seem like the earlier
characters have not changed at all. But we know better.

9-5. Jumping Around in Our Character String
Program

By now it should be clear line 90 is the bottom of the loop started by line
50. In other words, when line 90 is executed, the M5 computer goes back to
line 50 and checks whether H has exceeded LNG. When H becomes larger
than LNG, the next statement executed is line 100.

When you were executing the program, the screen blanked out after dis­
playing the last character of your input line. Look at line 100. It’s executed
after your character string was displayed character by character. In other
words, it’s executed after its job was done.

100 GOTO 20

Obviously, line 100 will cause the M5 computer to go to line 20. This is
actually telling the M5 to start the job over again. Look at line 20.

20 CLS

Recognize it? That’s right. We’ve executed this statement before. The CLS
statement in line 20 will clear the screen. This prepares the screen for your
next character string.

We've now come around full circle. You’ve also seen line 30 before. It’ll
ask you to enter another character string and display it for you one character
at a time and then blank out the screen. You can keep doing this literally
forever, or until you get bored of it.

64

Chapter 9 What’s a Character String?

9-6. Hints to Understand Your Program Better
So, you now know your practice software program goes to one line, then

to another, and then yet to another that may not even be sequential. For
larger programs, this can become a bit frustrating to understand unless you
understand the flow of your program. Even then, since the screen only shows
24 lines, it’s very difficult to understand how large programs jump from one
place to another.

Before you even sit down at your computer, think about what you want
your computer program to do. When this is clear in your mind and written
down, compose your program on paper.

Let’s think about our practice program again. Look at the lines to the left
of the BASIC I statements below. They connect statements that are related
to each other. Line 20 is connected to line 100 since line 100 will jump to
line 20. Line 50 is related to line 90 since line 90 is the bottom of the FOR-
TO-NEXT statement that was started in line 50. This will help you to see the
flow of your programs.

10 REM "LEARNING CHARACTER STRINGS"
—20 CLS

30 INPUT "Try inputting a character
s tr in g "5STR$

40 LET LNG = LEN <STR$)
|-50 FOR H= 1 TO LNG

60 LET TEM$=LEFT$CSTR$,H)
70 PRINT CURSOR(1 0 ,1 0) !TEN*
80 FOR C=1 TO 1000!NEXT C

*-90 NEXT H
1— 100 GOTO 20

After you’ve typed your program in, the same technique can be used to
help you correct your programs, especially if you have a printer.

You’re not alone when you use this method; professional computer scien­
tists also do it this way.

Chapter 9 What’s a Character String?

9-7. An Easy Software Timer
Let’s skip line 70 for now and look at line 80.

80 FOR O l TO 1000: NEXT C

When you ran the program, did you notice a pause each time a new
character was displayed? The pause was because of line 80. You know how
a FOR-TO-NEXT statement works. Look at line 80. Confused? That’s right. It
seems line 80 does no work at all except loop around for 1000 times. You
guessed it. It’s stalling. It twiddles its thumb 1000 times and then goes on to
line 90. If you want the M5 to stall a bit longer, increase 1000 to 3000, or
more; or decrease 1000 to 500 so it’ll stall less.

If you want to get into computer talk, call it a software timer. Try changing
the timer value from 1000 and run the program again.

Notice there’s a colon between the 1000 and the word NEXT in line 80.
This is how you can put more than one statement on a line. Just insert a
colon between the statements.

9-8. Printing Characters on the Screen
Look at line 70.

70 PRINT CURSOR<10,10);TEN*

This PRINT statement is not like the others you've used. Remember line
60? It uses the LEFTS function built into BASIC I. The PRINT statement in
line 70 is similar. Instead of simply displaying a variable, it uses a BASIC I
function called CURSOR. Not surprisingly, this function, when used together
with the PRINT statement, takes the cursor and puts it at a location known
as (10,10). This is why your input line wasn’t displayed starting from the
leftmost column of your screen.

For example, the next PRINT statement will print the value stored in
variable “ A” at the center of the screen.

PRINT CURSOR<16, 12)5 A

66

Chapter 9 What’s a Character String?

As you can see, the CURSOR function has two arguments. These two
arguments are the X (horizontal) and Y (vertical) coordinates of the screen.
Look at the figures below.

0
1
2
3
4

23

Notice the numbers 0 through 31 listed above the screen. This means the
screen has been divided into 32 vertical positions (0 is also used), otherwise
called the X coordinate. Now look to the left of the screen. The numbers 0
through 23 show the screen is divided into 24 horizontal positions. If you
combine both an X coordinate and a Y coordinate, you can display a charac­
ter anywhere on the screen. Take an X coordinate and space over until you
reach the vertical position of the X coordinate. Then go down the imaginary
line of the X coordinate until you reach the horizontal position of a Y coordi­
nate. There you are, at the point described by (X,Y). On the M5 computer,
this is known as the G I mode. Now you see why the CURSOR function
takes two arguments. The first argument is the X coordinate; the second is
the Y coordinate. The following statement is the general case.

0. 1.2. 3. 431

o o (31. 0 ^

When in G I, G II
or multicolor mode

i(Os23) (31.23)^

PRINT CURSOR(X,Y)

So why is (16,12) the center of the screen? Space over 16 positions across
the top of the screen. It’s the vertical center of the screen. Now space 12
positions down the screen. This is the horizontal center of the screen. Taken
together, this is the center of the screen.

For instance, if you want to display a character at the top right of the
screen, use the following statement. Do you see how it works?

PRINT CURSOR(3 1 ,0)? “A"

Be careful when using the CURSOR function. If you point the cursor past
31 for the X coordinate or past 23 for the Y coordinate, the cursor will be
displayed off the screen. That’s right. You won’t be able to see the cursor.

Chapter 9 What’s a Character String?

9-9. Using the TAB Function
Now you know how to display a character anywhere on the screen using

X and Y coordinates. Another cursor function, called TAB, is also very handy
to use. Unlike the CURSOR function, the TAB function can only space over
horizontally. It only needs one argument.

To try the TAB function, let’s replace line 70 of the character string pro­
gram we were playing with earlier in this chapter with:

70 PRINT T A B (1 0) STEM*

Now run the program again. Let’s use the character string ‘CREATIVE’
again. The result displayed on the screen is shown below.

c r e a t i ^ e

You cannot use the CURSOR function to force the screen to scroll. On the
other hand, the TAB function can make the screen scroll. Try changing the
value 10 in line 70 and run the program again. See how the cursor spaces
over to the position indicated by the argument? Each time the end
of a line is reached, the cursor moves to the first position of the
next line.

68

Chapter 9 What’s a Character String?

9-10. Various Character String Functions
We’re already gone over two character string functions. Namely, LEN and

LEFTS. Lo and behold, there are more. Among these are RIGHTS and MID$.
It’s pretty obvious what these functions do. But let’s try them and see. Go
back to the program we were working on earlier in this chapter and replace
line 60 with:

60 LET TEM$=RIGHT*(STR*,H)

Was the result what you expected?
Now let’s try the MIDS function. This time, replace line 60 in our practice
program with:

60 LET TEM$ = MID$ (STR$> 1.- 3)

Unlike the LEFTS and RIGHTS functions, MIDS does not take characters
off either end of a character string. Rather surprisingly, it grabs characters
from the MIDdle of a character string. What you need to do is tell it where
to start taking characters and how many to take.

The first argument, STRS, is the character string to look at.
The second argument, the number 1, tells the M5 to start from the first

character of STRS (starting from the leftmost character). Yes, it designates
the leftmost character of STRS. If you change the second argument to 2, it’ll
start taking characters from the second character.

The third argument tells the M5 how many characters to take. In our ex­
ample, line 60 will take three characters from STRS starting from the leftmost
character.

Say we’ve stored the character string ‘CREATIVE’ in STRS.

Character string C R E A T I V E

Character number 1 2 3 4 5 6 7 8

If we execute line 60, characters numbered 1 through 3 will be assigned
to TEM$. TEMS will contain the character string ‘CRE’. But if we change the
second argument from 1 to 3, what do you think will happen?

60 LET TEM$ = MID*(STR*,3, 3)

Yes. We’ll take three characters starting from character number three and
put them into TEMS. TEMS will then contain ‘EAT’.

Got the hang of it?

Chapter 10 Dice Graphics

10-1. Dice Graphics
Remember the “ dice game” in chapter 8? Let’s make it more interesting

and learn something at the same time. Sound good?
In this chapter, we’re going to get into some graphics. But what are

graphics? Put simply, they’re pictures. And the way we’re going to use them
is just like the alphabetic and numeric characters we’ve used before. Sound
easy? It is.

•Drawing Dice
Review the dice program you played with in chapter 8. If you didn’t save it

on tape yet, type it in again and add the part enclosed in CZH in the following
program list. One pointer; when you’re typing in lines 1000 to 1540, use the
graphics mode on your console to type in the graphics characters that are
between the double quotes. Remember, you don’t have to use the SHIFT or
CTRL keys when using the graphics mode. Just press the key that you want
displayed. After that, go back to the alphabetic mode to type the alphabetic
characters, then back to the graphics mode again to type the graphics
characters.

Hang in there. It takes a little practice and a little patience.

5 REM Dice Graphics Program
10 CLS
100 REM Computer r o l l s your d ie
110 GOSUB 400
120 PRINT "Your d ie is a "5 DIE
130 LET MYDIE=DIE
140 GOSUB 300
200 REM Computer r o l l s i t s d ie
210 GOSUB 400
220 PRINT "Computer r o l l s a "5 DIE
230 LET CDIE = DIE
240 GOSUB 500
300 REM Who won?
310 LET STR$="The computer won"
320 IF MYDIE = CDIE THEN LET STR*="Draw"

„ 330 IF MYD I E >CD IE T H E N L E T STR*="You won!"
to be pressed P R I N T

350 IF IMKEY$ ="
360 GOTO 350

T H E N G O T O 1 0

3 7 0 E N D

Roil die REM Random l y generated d ice subroutine
410 RANDOMIZE
420 LET DIE = RND(5)+1
430 RETURN

70

A

Chapter 10 Dice Graphics

500 REM Test dice/draw d ice subroutines
510 IF DIE = 1 THEN QGSUB 1 000
520 IF DIE = 2 THEN GOSUB 1100
530 IF DIE = 3 THEN GOSUB 1200
540 IF DIE = 4 THEN GOSUB 1300
550 IF DIE = 5 THEN GOSUB 1400
560 IF DIE = 6 THEN GOSUB 1500
580 RETURN

1000 PRINT H r— — — T II
10 10 PRINT ii 1 1 II
1020 PRINT ii 1 ♦ 1 II
1 030 PRINT ii 1 1 II
1040 PRINT ii Li mmmm J II
1050 RETURN
1100 PRINT ii

r_ ___ T II
1110 PRINT H 1 ♦ I II
1120 PRINT ii

1
|

1
|

II
1 130 PRINT u

* II
A 140 PRINT ii B. mmmmmmJ II
1 150 RETURN
1200 PRINT ii r — mmmmmmT II
1210 PRINT ii 1 # 1 II
1220 PRINT ii 1 ♦ 1 II
1230 PRINT ii 1♦ 1 II
1240 PRINT ii L J II
1250 RETURN
1300 PRINT H r— — — T II

1310 PRINT ii i * ♦ 1 II

1320 PRINT i i i 1 II

1330 PRINT H i♦ ♦ 1 II

1340 PRINT n k— — — •M II

1350 RETURN
1400 PRINT n r— — T II

1410 PRINT ii 1♦ ♦ 1 II

1420 PRINT i i 1 » 1 II

1430 PRINT n 1• ♦ 1 II

1440 PRINT i i k— — J II

1450 RETURN
1500 PRINT i i r— — — T II

1510 PRINT ii I• ♦ 1 II

1520 PRINT H 1 • ♦ 1 II

1530 PRINT i i 1# # 1 II

1540 PRINT i i k— — — J II

1550 RETURN

Chapter 10 Dice Graphics

If you’ve followed the flow of the program and read the REMark state­
ments, you’ll know what this program is doing. For those of you who are not
so sure, let’s go over some important points.

Look at line 350.

350 IF INKEY*=" " THEN GOTO 10
indicates a SPACE k e y ---------------------------- 1

We haven’t gone over the IN KEYS function yet. But like LEFTS and
RIGHTS, INKEYS is also a function built into BASIC I that is used for character
strings. Its function is to read keys typed in from the typewriter-like console.

Line 350 will take the character you type in while you’re playing the game
and check whether it’s a space. A space is indicated by a blank enclosed
between two double quotation marks. An example. If you enclose an ‘A’ in
quotation marks, the M5 would be expecting you to press the A key.

Keep in mind when you use the INKEYS function, it doesn’t wait for you to
type in a character. If you haven’t typed anything in, the M5 will go onto the
next BASIC I statement.

Try it.

350 IF INKEY*="a" THEN GOTO 10
indicates an ‘A ’ key ---------------------------------*

Now look at line 350 and 360 as a set.

350 IF INKEY*=" " THEN GOTO 10
360 GOTO 350

Line 360 will always jump to line 350. In essence, it’s an infinite loop that’ll
go on forever until a space is typed in from the console. When that happens,
the M5 computer will jump to line 10 which starts the dice program over
again. Remember, if you haven’t typed anything in, the IF test in statement
350 is not satisfied and the GOTO 10 is not executed. In this case, line 360
is executed next which jumps back to line 350. This continues until you type
in a space, “ ” .

Notice that if another character (which is not a space) is typed in, the dice
game ignores it and continues to wait for a space.

Now look at lines 500 to 580.

72

Chapter 10 Dice Graphics

500 REM Test dice/draw d i c e
510 IF DIEM THEN GOSUB 1000
520 IF DIE = 2 THEN GOSUB 1100
530 IF DIE-3 THEN GOSUB 1200
540 IF DIEM THEN GOSUB 1300
550 IF DIE = 5 THEN GOSUB 1400
560 IF DIEM THEN GOSUB 1500
580 RETURN

Let’s look at line 580 first. Since it contains a RETURN statement, we
know a number of statements preceding it make up a subroutine. In fact,
since we wrote the program ourselves, we know the subroutine starts from
line 500 and ends on line 580. Basically, this subroutine checks the value of
the rolled die and calls another subroutine to draw the die.

Line 510 checks whether the rolled die is a ‘1’; if so, the M5 calls the sub­
routine beginning on line 1000. If the die is not a ‘1’, the M5 checks whether
the die is a ‘2’ in line 520. If so, it calls the subroutine starting on line 1100.
This goes on until the right subroutine is called.

Going onto lines 1000 to 1550, we see these lines actually consist of six
subroutines, one subroutine per die. After drawing a die, a RETURN statement
causes the M5 to return to the line after the calling statement. For instance,
if the subroutine beginning on line 1100 is called to draw a die with two pips
(using line 520), the RETURN statement in line 1150 causes the M5 to jump
back to line 530 (the line following line 520). In other words, even if a ‘1’ is
rolled and the subroutine beginning on line 1000 is called, lines 520 to 560
are still executed.

Remember, if you want to play the game once again, press the SPACE
key or the A key, depending on which one you indicated in line 350. When
you want to stop playing the game, press the SHIFT key and RESET key at
the same time.

Chapter 10 Dice Graphics

10-2. Rolling Dice
Let’s get a little more advanced and roll the dice on the screen. Add the

next few program statements. But first, one pointer. When you type in the
characters between the quote marks in line 160, press the SHIFT, CTRL and
t keys simultaneously. This generates a special character that prevents the
screen from scrolling. Look in Appendix F for other special characters and
what they’re used for. They can also be enclosed in double quotation marks.

150 IF INKEYT=" " THEN GOTO TROLL
160 PRINT " t t t t t t f - -------SHIFT CTRL f
170 GOTO 100
205 TROLL

Line 150 is expecting you to input a SPACE key. It’s the same function you
used before in line 350. This time, instead of jumping to line 10, we’ll jump to
a statement labeled with $ROLL. No, it’s not a character string variable, it’s
used in the same way as line numbers. You can make the M5 jump to a
statement simply by specifying a GOTO or a GOSUB keyword followed by
the statement label. (Don’t confuse the GOTO and GOSUB statements; they

r function differently.) In our example program, if a SPACE key is typed in,
line 205 is the next line executed. Do you understand why? Yes. When the
INKEY$ = ” “ test is satisfied, the THEN GOTO $ROLL statement is executed
which brings us to the SROLL label (line 205).

Within the scope of our program, what do the four statements above do?
They allow you to roll your own die. What actually happens is the M5 com­
puter will continue to roll your die for you until you tell it to stop. You can
stop it by pressing the SPACE key. Line 160 prevents the screen from scroll­
ing while the M5 computer is rolling your die. Afterwards, the computer rolls
its own die and the result of the game is displayed.

10-3. Coloring the Die Face
Let’s color the die pips, so add the next couple of statements.

20 PRINT "B"
30 FOR 1=4 TO 6
40 STCHR "4040404040404040" TO &E 1, I
50 NEXT I

74

Chapter 10 Dice Graphics

Line 20 changes the screen to the graphics mode, also known as the Gil
mode. The STCHR statement in line 40 is used to specify colors on the
screen.

40 STCHR "4040404040404040" TO &E1 , I
i________________ i i__i u

Color choice What is colored Screen position

Color choice— Refer to the color code table in Appendix B to choose the
color you want to display.

What is colored— Specify the ASCII code of the characters you want to color.
Screen position— The Gil mode divides the screen into three parts, the

upper, middle and bottom portions. You can choose any color for each
of these parts. Look at the figure below. The upper part is assigned the
value four, while the middle and bottom parts are given five and six
respectively. _______________

Top 4

Middle 5 *

Bottom 6

___*

In this case, if you make I equal to 4, only the upper part of the screen will
be blue. The middle and bottom portions of the screen will not be colored.
Line 40 uses this feature to color the pips on the die.

So after building onto our small program we started with in chapter 8, we
now have a program that allows you to roll your own die that competes with
a die rolled by the computer. We can also display the die as it rolls with col­
ored pips.

When you venture from this manual and begin composing your own pro­
grams, keep this technique in mind. Start with an idea. Think in broad terms.
What do I actually want my computer program to do? Will I want to add onto
it in the future? What kind of user input do I want? Then think about how to
break it down to smaller functions until you can write the BASIC I to perform
your function. But before you actually write the BASIC, ask yourself these
questions. Am I going to be able to build onto this later? Have I made this
program flexible enough? Have I put in enough REMark statements? Can
someone else understand my program? This last question is often a good
test to find out if you’ll also be able to understand your program later. You
may be surprised to find out how many times you’ll be referring to your old
BASIC programs.

Chapter 11 Conclusion

11. Conclusion
How was that? Not so bad?
We hope this was a good introduction to the BASIC computer language.

Without being too wordy, this manual should have given you a good feeling
about what you can and cannot do with computers, especially using BASIC.

For beginners, this may have been slightly difficult. Don’t worry. Keep
plugging away. Take old programs and modify them. Then write some small
programs that interest you. Before long, you’ll be composing some pretty
elaborate software. This is the probably the best way to improve your
understanding of BASIC I.

For those of you who feel adventuresome, look at the appendices. They
have some very useful information that’ll allow you to take advantage of some
advanced BASIC features. You can also enjoy the UFO program in Appendix
A that uses some of these high-level BASIC I techniques. Type it in. Play
with it. Look at the software. See if you can think of ways to make it more
interesting. Modify it. Play it again. Write your own games. Your M5 can work
better for you if you know what it can do. You’re the boss.

The next time you’re sitting under the stars thinking about new applications
for your M5 computer, try to be free. Let your imagination wander. The cur­
rent age of high-speed information processing is still a fairly new innovation.
It’s a baby-science guided and motivated by people like you. Learn what a
computer can do and demand the computer manufacturers of today know
and meet your needs for today and tomorrow. And talk to us. We’re tuned
into your needs.

76

Appendix A

Appendix A — UFO Game
All right! Now we’re ready for the big time. This game tests your skill in

shooting down invaders while avoiding meteors. Try it!
After you key it in, it’s a good idea to save it on tape before you do any­

thing else. Call it ‘UFO’.
This is a fairly long program. If you accidently turn off power or input a

NEW command, you’ll have to type in the whole program again. Save it on
tape, then you can retrieve it any time you want. Then type in the RUN com­
mand and you’re on your way.

When you’ve become proficient at this game, try to think of ways to make
it more exciting. Modify it. Play it. Create your own game.

If the UFO game doesn’t work properly, use the LIST command to look at
your program. Check that it’s identical to the following listing.

Flow to play
• To move the flying saucer u pt
• To move the flying saucer down I

Score
• You’ll get 10 points each time you knock out an invader.
• After you get 1200 points, the number of meteors will

increase and you’ll get 100 points for each invader
you knock out.

To execute the UFO Game program again, input the command RUN follow­
ed by RETURN. Pushing FUNC R will not execute the game. After the UFO
Game is finished, turn the power off and on again before saving or loading
another program.

Note
If you don’t knock out any invaders for a long time, the

Game will automatically end and a READY message will
be displayed.

5 REM ufo game
10 READ SC
20 OUT &20.- &F6
30 LET X=5
40 LET A=PEEK(&701A)
50 POKE' &701A, A AND &EF
60 PR I NT " til 0 IS " ? : LET SL = 10 0
70 VIEW 0 ,5 ,3 1 ,2 3 : LET STC-&40
100 LET ux=32:LET UY=0:LET LV=3
110 GOSIJB 10000
120 FOR LP =0 TO 1
140 PRINT CURSOR(3 0 ,RND(18)> 5"•"

Appendix A

EIVT)

zasah vto

141 IF RND (9) < 4 THEN PRINT CURSOR (30.. RND (18)) 5 " 4"5
142 FOR 1=1 TO LV
150 PRINT “HI "5
154 FOR J=1 TO 2
160 GOSUB 1000:GOSUB 2000
164 NEXT J :NEXT I
170 LET SL=SL-1 ±
180 IF SL< 0 THEN END *
190 IF LP=0 THEN GOTO 220
200 STCHR " 183c7edbdb7eS142" TO &7F> 1
210 GOTO 300
220 STCHR " 183c7edbdb7e4281 " TO &7F, 1
300 NEXT
400 GOTO 120

*1000 LET S=PEEK(&702B)
1010 IF S = 51 THEN GOSUB 1100
1030 IF S = 46 THEN GOSUB 1200
1060 LOG 0 TO UX> UV
1070 RETURN
1100 IF IJY > = 2 THEN LET UY=UY-2
1110 RETURN
1200 IF UY< = 140 THEN LET IJY = UY+2
1210 RETURN

~2000 LET UAD = UY/ 8 * 32+UX/ 8+&3800 +32+5
2010 LET UAD=UAD+(UY AND 4) + 8 + (UX AND 4) /4
2016 LET BCHR=VPEEK (UAD)
2020 IF BCHR = 225 THEN GOTO 3100
2030 IF BCHR =127 THEN GOTO 2200
2040 RETURN
*2200 VIEW
2210 LET 0=0+SC:LET SL=SL+10 ^
2215 PRINT "ig"
2220 PRINT CURSOR(9, 2)5 0?
2230 VPOKE UAD ?32
2240 LET UX=UX+1
2250 IF UX<160 THEN GOTO 2400
2260 IF UX< = 1 THEN GOTO 2400
2270 LET LV = LV-1
2280 LET UX = 32
2290 READ SC
2300 LET STC = STC+-£:40
2310 VPOKE &3B9C,STC
2400 VIEW Or 5?31? 23

78

Appendix A

2410
X P L 3100

3110
3130
3140
3150
3160
3170
3200
3210
3220
3230
3236

3260
3280

RETURN
VPOKE UAD ?32
LOG 0 TO 256.-0
FOR BL=1 TO 3
FOR BB=1 TO 2
LOG BB TO UX? UV
LOG 3-BB TO 256? 0
LOG BB TO IJX.-IJY
GOSUB 30000
NEXT BB
NEXT BL
LOG 2 TO 256? 0
VIEW
LET X*X-1
PRINT CURSOR (8+X? 3) ? " j V"
IF X = 0 THEN GOTO 4000

3300 GOTO 2240
4000 PRINT CURSOR(12?10);“Game Over
4010 OUT &20?&FF
4020 END
fRTooo REM
10050 VIEW
10110 VPQKE &3B9C? STC
10130 STCHR " 182442427effff66" TO 0
10136 STCHR “182442427e f f f f 66” TO £<82? 1
10140 STCHR "3c66«79999e7663c" TO 1
10150 STCHR Mc3991866661899c3" TO 2
10160 STCHR " 183c7edbdb7e4281" TO £<7F? 1
10200 FOR 1=0 TO 2
10210 SCOD I ?I
10220 SGOL I ? 2 X% (I +1)
10250 NEXT I
10260 PRINT CURSOR (3? 2) ; "iflSco re :H"5
1 0266 PRINT CURSOR(3 ,3 > 5"Le f t
10270 print n iar,‘;
10280 FOR 1=1 TO 30
10290 PRINT ,,- n;
10300 NEXT I
10310 PRINT " >
10320 FOR 1=1 TO 3
10330 PRINT M| " ; CURSOR(31,1)5" PS
10340 NEXT I
10350 PRINT "l." ?

Appendix A

10360 FOR 1=1 TO 30
10370 PRINT
10380 NEXT I
10390 PRINT "J
10510 MIEW 0 ,5 ,3 1 ,2 3

111000 RETURN
30000 OUT &20, &9F: OUT &20, &BF
30010 OUT &20, &E75 OUT £ 2 0 ,&F0
30020 FOR FRQ=1 TO 20
30030 OUT &20,&C0
30040 OUT A20,FRQ
30045 FOR T=1 TO 60s NEXT
30050 NEXT FRQ
30060 OUT &20, &F6

450070 RETURN
31000 DATA 10,100,200
31010 END

80

Appendix B

Appendix B— Color Codes
Remember the dice program in Chapter 10? Remember using the STCHR

statement? We colored the screen with this command. This appendix lists all
the colors you can choose.

For example if you use:

STCHR “ 80 80 80 80 80 80 80 80” TO &E1,4
L- - - - - - - - - - - - - - T- - - - - - - - - - - - - J V

Color code Character code

the &E1 character code will be colored red. Look down at the table for color
code 8. You can see that it’s red. But how do you know what the &E1 char­
acter code is? Refer to the chart in Appendix C. Look across the top row and
find ‘E’, then go down until you reach the ‘1’ row. See the shaded circle?
That’s the graphics character for &E1.

If you would rather color around the circle, in other words, generate
a □ character, change the ‘80 80 ... 80’ to '08 08 ... 08’, like this
(numbers are reversed).

STCHR “ 08 08 08 08 08 08 08 08” TO &E1,4

That’s right. Changing the 80’s to 08’s leaves the character indicated by the
character code not colored. Rather, the space around it is colored. This is
true for any of the characters and colors. If you want the character colored,
specify the color in the first character. If, not specify the color in the second
character.

For this function, we’re going to use the Gil mode.

COLOR CODE TABLE

Color code 0 1 2 3 4
Color No color Black Green Light

Green
Deep
Blue

Color code 5 6 7 8 9
Color Light

Blue
Deep
Red

Cyan Red Light
Red

Color code A B C D E F
Color Deep

Yellow
Light

Yellow
Deep
Green

Purple Gray White

Appendix C

Appendix C — Character Codes
This appendix lists what is known as the ASCII representation of all char­

acters that can be stored and displayed by the M5 computer.
To use this appendix, find the character you want to display. Then look up

at the row of numbers and letters across the top and find the one that lines
up with your character. Now look to the left at the leftmost column of numbers
and characters for the corresponding number or character. Then combine
these two characters. The one you found first is followed by the second.

Let’s look at three examples. Verify that they’re correct in the table below.

Character to display Character code
$ &24
H &48
+ &2B

1
*“«
JLm

3
4
5
6
P

9
fi
B
CDEF

5 6 7 8 9 f l

P ' P S -* I
lQ a q < J _ 8
R b r

L. Y 8 H JT d t --T,v
Ueu-H S
yf ft

X h x - J b

BCDEF

82

Appendix D

Appendix D— Commands
The commands in this appendix will prove themselves to be useful in

utilizing your M5 better. Try them out. Become familiar with them.

Direct Commands
Command Usage Examples

1 AUTO AUTO M,N AUTO 10 . AUTO 100, 10
2 CLEAR CLEAR CLEAR
3 CLS CLS CLS
4 CONT CONT CONT

5 DEL DEL M,N DEL 1 0 ,5 0
6 L IS T L IS T M,N L IS T 10 L IS T 1 0 ,5 0 L IS T ,50
7 L IS T #2? L IS T #2? M, N L IS T # 2 , L IS T #2 , 10, 100
8 NEW NEW NEW
9 RUN RUN RUN N RUN RUN 100

Input/Output Commands
Command Usage Examples

1 CHAIN C H A IN ” f i l e name" CHAIN"UFO"

2 DATA DATA N , M , ------ DATA 1 , 3 4 , "CD"
3 INPUT INPUT N ,M $,— INPUT A? B$
4 OLD O L D " f i le name" OLD" UFO" OLD" UFO" , 10 0
5 OUT OUT N,M OUT & 2 0 ,& 3 F
6 PRINT PRINT N ,M $,------ PRINT A , B * , P R IN T" UFO" ,3 3
7 PRINT # 2 , PRINT #2 , PRINT #2 ,
8 READ READ N ,M ,------ READ A ,B ,€ *
9 RESTORE RESTORE N RESTORE 100

10 SAME S A V E " f i le name" SAVE" UFO"
11 SAVE S A V E " f i le n a m e "? A M ,1 SAVE "UFO" , .&2000, &3FFF, 1

12 TAPE TAPE TAPE
13 VERIFY V E R IF Y " ! ' i le name" VERIFY"UFO "

83

Appendix D

Comments
1 Automatically assigns you line numbers for program input
2 Clears all variables
3 Clears the screen
4 Resume execution of the program that was stopped by

the STOP command. Execution resumes from where it stopped.
5 Delete part of a program
6 Display a program or part of a program on the screen
7 Print a program on the printer
8 Erase the program stored in memory
9 Begin execution of a program either from the beginning or from a specified

line number

Comments
1 Retrieve a program saved on tape. Specify the file name of the program.

Remember each time you execute a program again, all the variables start
fresh, they’re not retained.

2 Specify data used by the READ statement
3 Use the M5 keyboard to input data and assign it to a variable(s)
4 Read a program or data (or part of a program or data) stored on tape
5 Output the value M to the I/O board (input/output equipment) specified by N
6 Display a character string and/or variable(s) on the screen
7 Print a character string and/or variable(s) on the printer
8 Read the data specified by DATA sequentially
9 Restore the data specified in the DATA statement and read by the READ

statement. A RESTORE 100 reads DATA on line 100.
10 Save a program named “ file name’’ on tape
11 The data displayed on the screen is saved on tape. (It takes about one

minute.)
12 Refer to the application program (refer to the M5 User’s Guide)
13 Confirm whether a file has been saved correctly. Display the file names of

programs stored on tape.

84

Appendix D

Program Commands
Command Usage Examples

1 CALL CALL N CALL
2 DIM DIM N CM) DIM N (M)$ DIM A (1 0) DIM A (1 0)%
3 END END END
4 FOR—TO—STEP FOR N=M TO A STEP B FOR N =1 TO 100 STEP 2

5 GOSUB GOSUB N GOSUB $N GOSUB 100 GOSUB SLAB
6 GOTO GOTO N GOTO *N GOTO 100 GOTO SLAB
7 IF -TH E N -E LS E IF N=M THEN C IF A =1 THEN GOTO 50

ELSE C ELSE B = 1
8 LET LET N=X LET M=N+1
9 NEXT NEXT N NEXT N
10 POKE POKE N>M POKE & 2 0 0 0 ,& 3 F
11 RANDMIZE RANDMIZE RANDMIZE
12 REM REM REM y o u r com m ents
13 RETURN RETURN RETURN

14 STOP STOP STOP

Note— A complete discussion of the POKE command is not appropriate here. Do not try to use it without more
knowledge of the M5 machine language. There’s a possibility you could cause your M5 to malfunction.

Appendix D

Comments
1 Call a program specified by N
2 Sets up a group of M related data fields referred to by N(M)
3 Stops program execution
4 Sets up a program loop. The example loops from N = 1 until it reaches 100

in steps of 2. Once N exceeds 100, the loop stops.
5 Jump to the desired subroutine
6 Jump to the desired line number
7 Condition statement. In the example, if A is 1, a jump is made to line 100,

otherwise B = 1.
8 Assignment statement
9 Bottom statement of a loop started by a FOR-TO-STEP statement
10 Write the value specified by M into the address specified by N
11 Initialize the random number generator
12 Comments to help you understand your program better
13 Jump to the statement following the statement that called this subroutine
14 Stop the executing program for just a moment. Use CONT to resume

execution.

86

Appendix D

Screen Control Commands
Command Usage Examples

1 LOC LOC N TO X? Y LOC 0 TO 256>192

2 MAG MAG N MAG 3
3 SCOD SCOD N? C SCOD 0 -2 5 5

4 SCOL SCOL M?C SCOL 0 ,4

5 STCHR STCHR " " TO N? M STCHR"4 0 4 0 4 0 4 0 4 0 + 0 4 0 4 0 " ■
TO &E1 ,6

6 VIEW VIEW XQ? VO? X. 1 ? Y 1 VIEW 0 ,0 ,3 2 ,2 4
7 VPOKE VPOKE N? M L'POKE & 3B 80+C /8 , 4 *1 6 + 0

87

Appendix D

Comments
1 Specify the position of a sprite on the screen

N = 0 to 31 (Sprite number)
X = - 32768 to 32768 (Dot number)
Y = - 32768 to 32768 (Dot number)

Note that you can only see the range X = 0 to 256 and Y = 0 to 192, on
the screen.

2 Change the size of a sprite (N = 0 to 3)
3 Specify a sprite in the graphics mode

N = 0 to 31 (Sprite number)
C = 0 to 255 (character code)

4 Assign colors to a sprite
N = 0 to 31 (Sprite number)
C = 0 to 15 (Color code)

5 Manage characters by their assigned character codes
“ ” = character pattern or color code
N = character code (Refer to Appendix C)
M = 1 to 3 (Character pattern management)

= 4 to 6 (Color management)
6 Divide the screen into squares specified by (X0,Y0) and (X1.X1)
7 Write the value specified by M into the address specified by N

88

Appendix E

Appendix E— Functions

Functions
Command Usage Examples

1 ASCI I ASCI I (X *) A = A S C 1 1 ("A ")
2 CHR* C HR*(N) A =C H R *(9 7)

3 HEX* HEX*CN) A *= H E X *(1 6)
4 IN KEY* IN KEY* A * = INKEY*
5 LE F T * L E F T *(X *? N) A * = LEFT* (" ABCD"? 2)
6 LEN L E N (X *) A=LEN ("ABC D ")

7 M ID * M ID * (X * ?N?M) A * = M ID (" ABCD % 2» 2)

8 R IG H T* R IG H T * (X * ,N) A * = R IG H T *("ABC D "> 3)
9 UAL U A L (X *) A = UAL (" 5 M)
10 RPT* RPT * CN ?X *) A *= R P T * (3 ? X *)

Operating Commands
Command Usage Examples

1 CURSOR CURSOR(X ?Y) PRINT CURSOR(1 6 , 1 2) ; A

2 ERR ERR PRINT ERR
3 ERRL ERRL PRINT ERRL
4 ERRL* ERRL* PRINT ERRL*
5 PEEK PEEK CN) A =PEEK (.5:3800)
6 TAB TA B (X) PRINT T A B (1 0) ; A
7 UPEEK UPEEK(N) A =UPEEK (-5<3800+ Y*3 2 + X)

89

Appendix E

Comments
1 Change the character enclosed by (“ ”) into its corresponding ASCII code
2 Change the ASCII code enclosed by () into its corresponding character. This

function is the opposite of ASCII(“ ”)■ Example:
ASCII(“ a”) = 97
CHR$(97) = a

Note these numbers are the decimal equivalents of the hexidecimal
numbers in Appendix C.

3 Change the value enclosed in () into its hexidecimal (base 16) value.
4 Read one character input from the keyboard.
5 Take N characters off the left end of character string X$
6 Counts the number of characters in the character string specified

between ()
7 Take M characters from character string X$, starting from character number

N (starting from the left).
8 Take N characters off the right end of character string X$
9 Returns the numeric equivalent of a character string
10 Returns N repetitions of character string

Comments
1 Set the cursor at the position designated by (X,Y)

X = 0 to 31 (Gl and Gil modes)
X = TO 39 (Text mode)
Y = 0 to 23

2 Print the last error number encountered
3 Print the last erroneous line number encountered
4 Print the last erroneous label encountered
5 Allows you to look at the RAM address specified by ()
6 Tabs the cursor by printing spaces to position X
7 Allows you to look at the VRAM address specified by ()

90

Appendix E

Value Functions
Command Usage Examples

1 ABS ABS(N) A =AB S (- 5)
2 FRE FRE(N) A=FRE(0)

3 INF IN P (N) A = IN F (0)

4 NUM* m m <x*> A$=MUM$(5)
5 MOD M MOD N A=8 MOD 5
6 RND RND CN) A=RND(1 0)
7 SGN SGM(N) A =SGN(3)

8 TIME TIME PRINT TIME

91

Appendix E

Comments
1 Returns the absolute value of the variable enclosed by ()
2 Tells you memory statistics

FRE(O)... Amount of memory already used
FRE(1)... Amount of memory left

3 Read one byte of data from the I/O board (input/output equipment specified
by the value enclosed in ()

4 Change the numberic value enclosed in () into its character equivalent
5 Divide 8 by 5 and returns the remainders
6 Return a random number between 0 and the value enclosed in ()
7 Return the sign of the number enclosed in ().

SGN(negative number) = - 1
SGN(O) = 0

, SGN(positive number) = 1
8 Returns the time the M5 computer has been powered on, up to 65535

seconds.

1

92

Appendix F

Appendix F — Control Codes
These are functions you can activate by pressing the CTRL key and the

key below. But note that there is a difference between directly inputting them
after a READY prompt and using them in a program.

When using control functions directly after a READY prompt, press the key
below while keeping the CTRL key down.

When using control functions in a program (for example, in a PRINT state­
ment), first press the CTRL and SHIFT keys down before pressing the keys
indicated below. Also enclose this character in double quotes. You can also
specify character codes in the CHR$ function. For example, PRINT CHR$(&0).
The signifies a character code follows.

Appendix F

Keyboard
Key

Base
10

Base
16

Function Program Usage
Display

0 00 Ignore
A 1 01 Ignore a
B 2 02 Return cursor to beginning of current line ia
c 3 03 Scroll screen display down a
D 4 04 Shift screen display left la
E 5 05 Scroll screen display up a
F 6 06 Shift screen display right a
G 7 07 Bell a
H 8 08 Backspace a
1 9 09 Tab the cursor eight spaces u
J 10 0A Move cursor down one line u
K 11 OB Move cursor to home position la
L 12 OC Clear screen display (Cannot be used as a direct command) is
M 13 OD Same as RETURN key
N 14 OE Move cursor to beginning of next line ISl
0 15 OF Change to standard mode a
p 16 10 Change to insert mode i a
Q 17 11 Change to multi-color mode a
R 18 12 Change to Gil graphics mode la
s 19 13 Change to Gl graphics mode a
T 20 14 Return to text mode u
U 21 15 Change to visible screen in
V 22 16 Alternates between the visible and

invisible screens, input is sent
to the displayed screen

HI

w 23 17 Same as RETURN key IS!
X 24 18 Delete characters to the right of cursor m
Y 25 19 Alternates between the visible and invisible

screens only a

z 26 1A Writes input to the alternate screen a

[27 1B Ignore
• 28 1C Right arrow

i ; 29 1D Left arrow
9 a 39 1E Up arrow T

/ 40 1F Down arrow 4-

94

Appendix G

Appendix G — ASCII Character Codes
The following table lists all characters that your M5 can store and display.

There are ways to specify the ASCII equivalents using the CHR$ function.
One way is to use the base 10 numbering system and the other is base 16.
When using base 16, precede the character code with a '& ’

DEC (HEX) CODE DEC (HEX) CODE DEC (HEX) CODE

32 (2 0) 71 (4 7) G 110 (6E) n
33 (2 1) i 72 (48) H 111 (6F) o
34 (2 2) II 73 (4 9) I 112 (7 0) P
35 (2 3) # 74 (4A) J 1'13 (7 1) q
36 (2 4) * 75 (4B) K 114 (7 2) r
37 (2 5) X 76 (4 0 L 115 (73) s
38 (2 6) & 77 (4D) M 116 (7 4) t
39 (2 7) 7 78 (4E) N 117 (75) u
40 (2 8) (79 (4F) 0 1 18 (7 6) V
41 (2 9)) 80 (50) P 119 (77) 10
42 (2A) * 81 (5 1) Q 120 (7 8) X
43 (2B) + 82 (5 2) R 121 (79) y
44 (2 0 ? 83 (5 3) S 122 (7A) Z
45 (2D) - 84 (5 4) T 123 (7B) <
46 (2E) .. 85 (5 5) U 124 (7 0 ii
47 (2F) / 86 (5 6) V 125 (7D) >
48 (3 0) 0 87 (5 7) W 126 (7E)
49 (3 1) 1 88 (58) X 127 (7F) <
50 (32) 2 89 (5 9) Y 128 (8 0) m
51 (3 3) 3 90 (5A) z 129 (81) o
52 (3 4) 4 91 (5B) c 130 (8 2) ♦
53 (3 5) 5 92 (5 0 \ 131 (83) *
54 (3 6) 6 93 (5D) 3 132 (8 4)
55 (3 7) 7 94 (5E) A 133 (85) a.
56 (3 8) 8 95 (5F) 134 (8 6) T
57 (3 9) 9 96 (6 0) t 135 (87) |
58 (3A) •• 97 (6 1) a 136 (8 8)
59 (3B) a? 98 (62) b 137 (8 9) H
60 (3 0 < 99 (6 3) c 138 (8 A) h
61 (3D) = 100 (6 4) d 139 (8B) +
62 (3E) > 101 (65) e 140 (8 0 r
63 (3F) ? 102 (66) f 141 (8D) L
64 (4 0) 3 103 (67) g 142 (8E) T
65 (4 1) A 104 (6 8) h 143 (8F) ■1
66 (4 2) B 105 (69) i 144 (9 0) —
67 (4 3) C 106 (6A) j 145 (91) —
68 (4 4) D 107 (6B) k 146 (9 2) ■i
69 (4 5) E 108 (6 0 l 147 (93) ■
70 (4 6) F 109 (6D) 148 (94) 1

95

DEC

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

Appendix G

(HEX) CODE DEC (HEX) CODE DEC (HEX) CODE

(95) 1 192 (CO) 235 (EB) *
(9 6) 1 193 (C l) %. 236 (EC) A
(97) ■ 194 (C2) H 237 (ED)
(9 8) ◄ 195 (C3) f 238 (EE)
(99) 'W 196 (C4) fl 239 (EF) r
(9A) A . 197 (C5) £ 240 (FO) —

(9B) ► 198 (C6) A 241 (F l) —

(9 0 199 (C7) SS 242 (F2) m
(9D) N. 200 (C8) 0 243 (F 3) m
(9E) 201 (C9) A 244 (F4) i
(9F) y 202 (CA) U. 245 (F5) i
(AO) 1 203 (CB) S 246 (F6) i
(A l) s 204 (CC) '.i 247 (F7) ■
(A2) t 205 (CD) ft 248 (F8)
(A3) 5 206 (CE) l 249 (F 9) ■ ■
(A4) A'

,v 207 (CF) 250 (FA) x
(A5) if 208 (DO) ft 251 (FB) H
(A6) i=i 209 f D l) § 252 (FC) A
(A7) 0 210 (D2) K- 253 (FD)
(A8) 0 211 (D3) 0 254 (FE) k
(A9) ft 212 (D4) 0. 255 (FF) w
(AA) ij 213 (D5) A

(AB) s 214 (D6) i
(AC) g 215 (D7) l
(AD) ■:> 216 (D8)
(AE) ♦ 217 (D9) u. DEC-*- denotes base 10
(AF) B 218 (DA) A HEX-*-'denotes base 16
(BO) 1 219 (DB) 0

(B l) § 220 (DC) i
(B2) i 221 (DD)
(B3) a 222 (DE) F-

(B4) c 223 (DF) *

(B5) y 224 (EO) a
(B6) ¥ 225 (E l) ♦

(B7) J 226 (E2) •

(B8) t 227 (E3) ♦

(B9) JB 228 (E4) s
(BA) 229 (E5) /
(BB) 230 (E6) \

(BC) 231 (E7) X
(BD) rl 232 (E8) —
(BE) V 233 (E 9) 4
(BF) £ 234 (EA)

96

Appendix H

Appendix H — Error Messages

Message Error Type Reason Comments/Erroneous
Examples

Err 1 FOR-TO-NEXT
statement error

• Missing NEXT statement
• No matching NEXT

statement

10 FOR A - l TO 10
20 PRINT A
30 NEXT B
40 END

* line 30 should be NEXT A to
match line 10

Err 2 Statement error Statement doesn’t make sense PRIMT “C"

Y
* PRINT is misspelled

Err 3 Subroutine error • CLEAR command was used
in subroutine

• GOTO jumped into a
subroutine

• RETURN statement found
without a matching
GOSUB

10 GOTO 30
20 END
30 PRINT M A"1
40 RETURN J

* Line 10 should be GOSUB 30
Err 4 READ, DATA

statement error
• Insufficient data
• Missing DATA statement

10 READ A,B
20 DATA 44

* Needs one more data value
Err 5 Variable type error Unexpected variable type 10 A*RND(At)

* RND expects an integer, not a
character string

Err 6 Overflow The result is too large to store
in the computer

PRINT 6 7 8 * 7 8 9

Err 7 Memory overflow • Too many subroutines
• Memory for variables

exceeds limit

DIM A (1 0 0 0 0)T
* Too many elements in array A

Err 8 Missing line number GOTO or GOSUB is missing
a matching line number

10 GOTO 100

* Line 100 is missing
Err 9 Variable error • Unexpected variable value

(should not be negative
or zero)

DIM A (0)
DIM B (-1)

* Bad arguments in both arrays
Err 10 Conflicting specification A variable attribute has been

specified twice
10 DIM A (6) yA(3)

Err 11 Division by zero Attempt to divide by 0 PRINT 3 / 0

Err 12 Incorrect statement • Statement not executable
• Use CONT command if you

want to execute past bad
statement

PRINT 5 / 0

* If you want to print a character
string, enclose in parentheses;
PRINT “ 5/0”

Err 13 Conflicting data types Two different types of data are
used together

* Resolve the conflict

Appendix H

Err 14 String overflow Insufficient memory for a
character string

* Reduce the number of
characters

Err 15 String error • Character string too long
• More than 256 characters
passed to a string
manipulation function

• Too many character strings
specified

• Incorrect string assignment
statement

10 A * « " a b c d e fg h i j"
20 B * » " k I m n o p q r s t"
30 C*«A*+B«

* Resultant string in C$ exceeds
eighteen characters

Err 16 Variable error The variable order is
incorrect

* Correct the order

Err 17 Duplicate label More than one label with the
same string

10 GOTO *A
50 *A
70 *A

* Delete incorrect label
Err 18 Cassette Read Error • During the reading of a

cassette file data was
incorrectly read.

Check volume level,
cassette tape and retry.

98

Appendix I

Appendix I— Mathematics Tutor Program
The following program can be simply typed into your M5 and enjoyably

entertain you for hours. It’s meant to drill you in the basic math skills of addi­
tion, subtraction, multiplication and division. For those of you who are learn­
ing these skills in elementary school, this program can help you to become
faster. And for those of you who have been out of school for awhile, it might
tax your ability as well. Likewise, the developer of this software was stretched
to give correct answers quickly for many of the problems. Try it. You may
be surprised at the results.

When you first run the program, a message will be displayed on the
screen.

Operation (+ , - ,x,/,mix)?

This message is asking you what type of functions you want to be drilled on.
So input one of the following:

Input Meaning

+ Addition problems
— Subtraction problems
X Multiplication problems
/ Division problems

mix Mixture of addition, subtraction,
multiplication and division problems

The program will then ask you what skill level you want.

Level 0, 1 or 2?

99

Appendix I

The meanings of the levels are shown below.

Level Meaning
0 Easy. The numbers in the problems

will always be positive numbers
less than 10.
The answers though, may be
greater than 9. Great for learning
multiplication tables.

1 More difficult. The numbers in the
problems will be less than 1300.
An exception is multiplication,
which is limited to 181. The
answers are correspondingly long.
All numbers are positive. How well
can you do without scratch paper?

2 Most difficult. It is similar to
level 1 except that negative
numbers are introduced. Are you
as good as you thought?

When you want to stop the game to go into another level or try another
set of functions, press the SHIFT and RESET keys simultaneously, then type
in R U N and the RETURN key.

After you type this program into the M5 memory, immediately save it. This
will save you from having to type it in again if the power is cut off accidently.

If you type it in and it doesn’t work, check that it is identical to the follow­
ing listing. Be sure all line numbers are correct. Verify that the GOTO line
numbers are correct. Make sure P1 is typed in as P1, and not P2, etc. The
graphics characters in lines 866 and 900 are the heart and the circle char­
acters. To type the heart, get into the graphics mode and press the SHIFT
and ‘O’ keys simultaneously. Then to type the circle, also get back into the
graphics mode and press the SHIFT and 7 ’ keys at the same time. Go back
to the alphabet mode to type in the other text.

Try to understand this program. It's actually a review of everything you
learned in this manual except for lines 872, 878, 930, 960, 980 and 1010.
These lines contain OUT statements which send sounds to your M5 console.
If you turn up your television while playing this game, you’ll hear what it’s all
about. If you don’t like it, turn down the sound on your television or even
change the program. Modify it. Make it better. Share it with your friends.
Work on it together. Write your own. It's all possible with your M5 computer!

100

Appendix I

Listing of Mathematics Teacher Software

10 REM mathematics teacher
20 CLS
40 INPUT "Operat i on< + , x , / , mi x)" S OPR*
50 REM check type of operation
51 REM, ------------ — — —

60 IF OPR**"*" THEN LET OP=1:GOTO 140
70 IF OPR* =" — " THEN LET OP=2:GOTO 140
SO IF OPR*="x " THEN LET OP = 3 2 GOTO 140
90 IF OPR* =M/" THEN LET OP=4:GOTO 140
1 00 IF OPR*="mii x " THEN LET OP = 5 : GOTO
110 CLS
130 GOTO 20
140 REM input s k i l t level
150 I NPUT " Leve l 0 .< 1 o r 2 " 5 LEVEL
160 IF LEVEL/ 0 THEN GOTO 140
170 IF LEVEL>2 THEN GOTO 140
190 REM er r f l g is an error f l ag
200 REM used when user misses
210 LET 4ERRFLG = 0 :LET MISSEO = 0
220 CLS
230 IF OPR*<>"m i x " THEN .GOTO 270
240 RANDOMIZE
250 LET OP = RND(3)+1
270 IF LEVEL>0 THEN GOTO 340
280 RANDOMIZE
290 LET P1= RND(9)
300 RANDOMIZE
310 REM pr eve n t di v i s i on b y 0
312 IF OP=4 THEN LET P2=RND(?>+1:GOTO 320
314 LET P2=RND(9)
320 GOTO 530
340 REM leve l 1/2 random number
350 REM generator
360 RANDOMIZE
370 REM p revent overflow
380 IF OP=3 THEN LET PI=RND<181>:GOTO 410
390 LET PIaRND(1300)
4 06 REM p reve n t di v i s i on by 0
410 RANDOMIZE
415 IF OP=4 THEN LET P2=RND(1300)+1:GOTO 450
420 IF OP=3 THEN LET P2=RND(1S 1>:GOTO 450
430 LET P2 = RND C1300)
450 IF LEVEL =1 THEN GOTO 530
460 REM level 2 number a11 erat i on

Appendix I

470 RANDOMIZE
480 LET FLAG=END(1)
490 IF FLAG =1 THEN LET P1=P1*-1
500 RANDOMIZE
510 LET FLAG = RND C1)
520 IF FL.AG= 1 THEN LET P2=P2*~1
530 REM pert o rm cal cul a t i on s
550 IF OP=l THEN GOTO 580
560 IF OP=2 THEN GOTO 610
570 IF OP=3 THEN GOTO 650
575 IF OP=4 THEN GOTO 680
580 REM ---- add i t i on
590 LET ANSW-F*1+P2
600 GOTO 710
610 REM---- sub tract i on
620 IF P2>P1 THEN LET C=P2sLET P2=P1:LET P1=0
630 LET ANSW = P1 —P2
640 GOTO 710
650 REM ---- mu11 i P l i c a +i on
660 LET ANSW=P1*P2
670 GOTO 710
680 REM ---- di v i s i on
690 LET ANSW = P1/ P2
700 LET TP = P1—P1/P2*P2
710 REM user i nput
720 CLS
730 IF ERRFLG=1 THEN PRINT CURSOR(15?15)'

"Try again
740 LET ERRFLG=0
745 IF OP = 4 THEN PRINT CURSOR <J 3?7)?

"quoti ent ?remai nder”
750 PRINT CURSOR <5 , 10) 5P15
760 PRINT " "5
770 IF OP= 1 THEN PRINT M + " ?
780 IF OP=2 THEN PRINT ii_ H ■

790 IF OP = 3 THEN PRINT " X M t

800 IF OP = 4 THEN PRINT ’* / II ■

820 PRINT P2S
830 PRINT M = M5
840 IF OP=4 THEN INPUT USRINFMJSRREMsGOTO 860
850 INPUT USRIMP
860 IF USRINPOANSW THEN GOTO 880
862 IF OP<>4 THEN GOTO 866
864 IF USRREMC >TP THEN GOTO 880

102

Appendix I

866 PR I NT CURSOR (13, 15 > 5 " <p R i g h t y o u a r e ! ” ?
870 FOR C=207 TO 230
872 OUT 1:20, C
874 FOR T =1 TO 80:NEXT T
876 NEXT C
878 OUT &20> &FF
879 GOTO 210
880 LET MISSED = MISSED+1:LET ERRFLG=1
890 IF MISSEEK3 THEN GOTO 710
900 PRINT CURSOR<12,15)5"• Answer is "5ANSW;
910 IF OP = 4 THEN PRINT “> "? TP
920 FOR C=175 TO 200
930 OUT &20?C
940 FOR T=1 TO 100:NEXT T
950 NEXT C
960 OUT &20,&FF
970 FOR C=239 TO 254
980 OUT 1:20 y C
990 FOR « T =1 TO 100:NEXT T
1000 NEXT C
1010 OUT &20, 2:FF
1020 GOTO 210

SORD COMPUTER CORPORATION
KYOBASHI K-1 BLDG., 7-12, YAESU 2-CHOME,
CHUO-KU, TOKYO 104, JAPAN

PHONE: (03)281-8118

TELEX: 2224225 (SORDIN J)

GEE-0116 Printed in Japan June ’83 IJ

